Меню

555 генератор с регулятором

Генератор с независимой регулировкой ширины и частоты импульсов

Texas Instruments LM555

Автоколебательный мультивибратор является популярным источником прямоугольных импульсов, полезным для многих приложений, таких как схемы синхронизации и звуковые извещатели. Один из наиболее распространенных способов генерации прямоугольных сигналов основан на использовании недорогого таймера 555. Иногда возникает необходимость в прямоугольных импульсах с фиксированной частотой, но переменной шириной импульса, или наоборот. Выполнить эти требования с помощью обычной автоколебательной схемы на основе 555 достаточно трудно. На Рисунке 1 показана модификация базовой схемы мультивибратора на таймере 555. Эту схему можно использовать для формирования стабильных импульсов, ширина и частота которых не зависят друг от друга и регулируются с помощью отдельных элементов управления. Выход 3 микросхемы таймера заряжает и разряжает конденсатор C1. Диоды D1 и D2 обеспечивают индивидуальные пути для зарядного и разрядного тока, соответственно. Два времязадающих потенциометра P1 и P2 управляют постоянной времени RC1 в течение циклов заряда и разряда.

Рисунок 1. Регулируя два потенциометра, можно независимо управлять шириной
и частотой импульсов.

При высоком уровне на выводе 3 микросхемы 555 конденсатор заряжается через R2 (часть P1, сопротивление которой зависит от положения движка потенциометра). Когда C1 заряжается до двух третей VCC, напряжение на выводе 3 опускается, и C1 разряжается через D2, P2 (сопротивление R1) и P1 (сопротивление R3). Когда напряжение на C1 достигает одной трети VCC, выходной уровень на выводе 3 вновь становится высоким. Процесс попеременного заряда и разряда С1 периодически повторяется, и результатом является выходной сигнал с требуемой шириной и частотой импульса. Поскольку прямое сопротивление диодов незначительно, ширина импульса равна

Период импульсов (величина, обратная частоте) равен

Таким образом, ширина импульса не зависит от положения движка потенциометра P2, а частота не зависит от положения движка потенциометра P1.

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Генератор прямоугольных импульсов на NE555

555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.

В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.

Схема включения в астабильном режиме. На рисунке ниже это показано.

Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.

Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.

Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;

С теорией закончили так что приступим к практике.

Разработал простенькую схему с доступными всем деталями.

Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить). Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.

Вид сверху, видны переключатели рабочей частоты.

Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).

Источник

Генератор на NE555 с регулировкой частоты

К слову, микроконтроллер NE555 был разработан еще в 1971 году и настолько удачно, что его применяют даже в настоящее время. Существует множество аналогов, более функциональных моделей, модификаций и т.п., но оригинальный чип по-прежнему актуален.

Микросхема представляет собой интегральный таймер. В настоящее время выпускается преимущественно в DIP-корпусах (ранее были версии в круглых металлических).

Функциональная схема выглядит следующим образом.

Рис. 1. Функциональная схема

Может работать в одном из двух основных режимов:

1. Мультивибратор (моностабильный);

Нас интересует только последний вариант.

Простой генератор на NE555

Наиболее простая схема представлена ниже.

Рис. 2. Схема генератора на NE555

Для наглядности далее представлен график выходного напряжения с сопоставлением заряда конденсатора C.

Рис. 3. График выходного напряжения

Таким образом, расчет частоты колебаний (с периодом t на графике) будет выполняться на основе следующей формулы:

соответственно формула полного периода:

Время импульса (t1) считается так:

тогда промежуток между импульсами (t2) – так:

Изменяя значения резисторов и конденсатора, можно получить требуемую частоту с заданным временем длительности импульсов и паузы между ними.

Регулируемый генератор частоты на NE555

Самый простой вариант – это переработка нерегулируемой схемы генератора.

Здесь второй резистор заменяется на два регулируемых включенных со встречно-параллельными диодами.

Другой вариант регулируемого генератора на таймере 555.

Рис. 5. Схема регулируемого генератора на таймере 555

Здесь положением переключателя (за счет включения нужного конденсатора) можно изменить регулируемый диапазон частот:

Включатель перед диодом D1 увеличивает скважность, его можно даже не использовать в схеме (при его работе может незначительно изменяться частотный диапазон).

Транзистор лучше всего смонтировать не теплоотводе (можно даже на небольшом).

Скважность и частоту регулируют переменные резисторы R3 и R2.

Еще одна вариация с регулированием.

Рис. 6. Схема регулируемого генератора

Транзистор – высоковольтный полевой (чтоб свести к минимуму эффект нагрева даже при высоких токах).

Чуть более сложная схема, работающая с большим числом диапазонов регулирования.

Рис. 7. Схема, работающая с большим числом диапазонов регулирования

Все детали уже обозначены на схеме. Регулируется за счет включения одного из диапазонов (на конденсаторах C1-C5) и потенциометрами P1 (отвечает за частоту), P4 (отвечает за амплитуду).

Схема требует двуполярного питания!

Мнения читателей

Микроконтроллер — ? Пиз**** статьи друг у друга, но хоть проверяйте что пи**** . И если у человека имя меньше 5 символов, то что ему уже и комментарий нельзя оставить ? Да .

Ко всему вышесказанному, 555 — микроконтроллер! Крутой МК.

Василий Зубенко / 25.01.2021 — 23:44

«Транзистор – высоковольтный полевой (чтоб свести к минимуму эффект нагрева даже при высоких токах)».Исправьте этот бред.

Люди,это всё фуфло изобретателей велосипедов

Да уберите же наконец схему на рис 5. При таком включении выходного транзистора, при положении движка потенциометра R4 в крайне верхнем положении он просто сгорит.Да и вообще схема сырая.

Подскажите пожалуйста, откудава взалась константа 0,693? Это не пороговое срабатывание микросхемы случайно?

Покажите человека у которого устройство показаное на Рис.7.работает.Столько ошибок -это даже восхищает!D6,Pin 4,8(555),про точки соединений я промолчу.А уж «земля»-виртуальный блеск!Постыдились-бы ребята.

Под Рис.3 в формуле для длительности паузы между импульсами следует убрать лишнюю звездочку и привести формулу к видуt2=0,693×R2×C

shadi abusalim / 03.09.2018 — 13:55

Пожалуйста, помогите вам использовать электронную схему, используя встроенный 555Чтобы отрегулировать ширину импульса и управлять им, чтобы добавить управление в вспышку, тушите и зажигайте лампу в том же кругеЧастота цепи должна составлять до 500 кГцСуществует круг, расположенный на сайте, похожий, но слегка колеблетсяmail shadi_abusalim@yahoo.comThe current and frequency are controlled by the variable resistors R3 and R2.Another variation with regulation.Fig. 6. Scheme of the regulated generator

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник

555 генератор с регулятором

Генератор высокого напряжения на NE555

Автор: Sobiratel_sxem, sobiratel_sxem@mail.ru
Опубликовано 03.12.2013
Создано при помощи КотоРед.

На просторах интернета очень много схем посвящено данной тематике и подобным конструкциям. Как правило они не лишены одного своего серьёзного недостатка: все они не имеют системы защиты от обратного напряжения. В большинстве случаев это приводит к печальным последствиям: выгоранию выходных транзисторов и пробою таймера NE555.

Испытывая одну из подобных конструкций я сам спалил пару микросхем NE555 и несколько выходных ключей. Тогда и возникла идея доработки данной схемы и добавления простейшей, но надежной защиты. После проведённой доработки больше при работе не возникало никаких проблем и не сгорело ни одного элемента. Итак, рассмотрим работу устройства подробнее.

Основу данной схемы составляет генератор прямоугольных импульсов на интегральном таймере NE555 (отечественный аналог КР1006ВИ1). Частота генератора задаётся цепочкой R1-R2-C1. При данных номиналах частота генератора составляет приблизительно 30 килогерц. С выхода генератора через токоограничительный резистор R3 выходной сигнал поступает на вход составного транзистора Т1-Т2. В коллектор транзистора Т2 включена первичная обмотка повышающего выходного трансформатора. Диод VD1 служит для защиты устройства от броска обратного напряжения при закрытии транзистора. Супрессорный диод VD2 защищает транзистор Т2 от пробоя и выбирается по максимальному напряжению коллектор-эмиттер Т2. Супрессорный диод VD3 защищает микросхему DD1 от пробоя. Так как максимальное напряжение питания микросхемы составляет 15 вольт, супрессорный диод следует выбрать на напряжение открывания не более этого значения (или немного превышающим). При работе на вторичной обмотке трансформатора напряжение приблизительно 5-6 киловольт. Это напряжение поступает на вход умножителя УН-9/27. С выхода данного умножителя и снимается высокое напряжение.

Таким образом доработка схемы заключается в установке диода VD1 и супрессорных диодов VD2 и VD3. Несмотря на всю простоту защиты, она дала отличные результаты и надёжную защиту схемы от бросков обратного напряжения.

Следует отметить интересный факт, что генератор собранный по данной схеме имеет так называемый электронный ветер — поток отрицательно заряженных электронов у высоковольтного провода. Его можно обнаружить по холодку при приближении руки к высоковольтному проводу. Поэтому данная схема и используется очень часто при построении ионизаторов воздуха. Кроме того замечен ещё один интересный факт: высокое напряжение с данной установки способно растекаться по поверхности диэлектрических материалов (стеклу, дереву, бумаге, фарфору, пластмассе. ), электризует вокруг себя лежащую бумагу (до того что при проведении рукой по газете, лежащей рядом с установкой по ней пробегают искры). Ни с одной другой схемой (без умножителя, то есть с переменным напряжением на выходе) таких эффектов не было обнаружено.

Внимание. Не проводите подобные опыты не имея достаточного опыта. Соблюдайте строго технику безопасности! Запомните: Электрический ток — это хороший слуга, но плохой хозяин.

Применяемые детали:

Трансформатор Tr1 — это переделанный строчный трансформатор от старого лампового телевизора. Для его переделки снимаем первичную обмотку и мотаем свою. Первичная обмотка содержит 8 витков провода ПЭЛ-1.5. Вторичная обмотка (высоковольтная, залитая пластмассой) остается штатной, после чего трансформатор собирается. При сборке следует между половинок сердечника следует сделать зазор около 1 мм из тонкого гетинакса или стеклотекстолита.

Источник

псевдо-Бистабильные реле RM-02, RM-04, RM-05

Пример №7 — Простой генератор прямоугольных импульсов на NE555

В момент включения схемы, конденсатор C1 разряжен и на выходе 3 таймера NE555 находится высокий уровень. Затем конденсатор C1 через резистор R1 начинает постепенно заряжаться.

Профессиональный цифровой осциллограф

Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

В момент, когда потенциал на конденсаторе, и соответственно на выводе 6 (стоп) таймера, достигнет примерно 2/3 напряжения питания, сигнал на выводе 3 переключится на низкий уровень. Теперь конденсатор через сопротивление R1 начинает разряжаться. Когда уровень напряжения на входе 2 (запуск) упадет до 1/3 Uпит., на выходе снова будет высокий уровень. И процесс повторится снова.

Если к выходу добавить еще RC-цепь (выделено красным цветом), то выходной сигнал по форме будет приближен к синусоиде.

ШИМ регулятор на микросхеме NE555

Аббревиатура «ШИМ» довольно часто встречается в технической среде, расшифровывается она как «широтно-импульсная модуляция». Шим-сигнал представляет собой непрерывную последовательность из прямоугольных импульсов, ключевыми параметрами такого сигнала будут являться длительность самого импульса (широта), и частота сигнала. Отношение длительности импульса и длительности паузы между импульсами называется скважностью, она может варьироваться от 0 до 100%, если скважность равна 0 %, сигнал будет полностью отсутствовать. Если начать понемногу увеличивать длительность, то импульсы будут выглядеть как тонкие иголки, если увеличить ещё — один станут похожи на прямоугольники. В случае, когда скважность равна 50%, длительность паузы становится равно длительности самого импульса, если же увеличить скважность до 100%, то сигнал просто превратится в некое постоянное напряжение — паузы между импульсами просто будут отсутствовать. Если же проинтегрировать такую непрерывную последовательность импульсов, то получится некое постоянное напряжение, амплитуда которого будет меньше размаха самих импульсов, причём будет строго зависеть от скважности.

Чем больше процент скважности — тем соответственно будет амплитуда постоянного напряжения после интегрирования. Именно это интересное свойство используется в ШИМ-регуляторах — устройство, мощность которого нужно регулировать, питают не постоянным напряжением, а вот таким сигналом из прямоугольных импульсов, то есть регулируя скважность меняется и напряжение на нагрузке. Интегрирование происходит «автоматически» за счёт присутствия на выходе конденсатора, а также паразитных сопротивлений и индуктивностей. Кроме того, некоторым устройствам, например, нагревателям, совершенно неважно, какая форма у питающего напряжения, импульсы это или постоянный ток. Огромным преимуществом ШИМ-регуляторов является большой КПД — именно по этой причине они и получили такое широкое распространение в электронике. Дело в том, что для создания прямоугольных импульсов на нагрузке управляющий транзистор работает в ключевом режиме — то есть находится всегда в одном из двух состояний, либо полностью закрыт, либо полностью открыт. В первом случае ток через него не протекает вообще, соответственно не выделяется никакого тепла, во втором же случае он представляет из себя перемычку с очень малым падением напряжения — тепло также практически не выделяется, особенно если применять транзисторы с максимально низким сопротивлением открытого канала. Тепловыделение на транзисторе обусловлено, в первую очередь, потерями при переключении транзистора, ведь переключает своё состояние он несколько тысяч раз в секунду. Таким образом, при коммутировании маломощной нагрузки радиатор не потребуется вообще, а для мощной же (при токе от 5-7А) небольшой радиатор может потребоваться. Схем различных ШИМ-регуляторов в интернете представлено достаточно много, в том числе и на микроконтроллерах с различными дополнительными опциями и наворотами. Представленная же ниже схема является самой типовой и простейшей — она имеет всего один орган управления (переменный резистор), которым будет регулироваться мощность на нагрузке, контакты для подключения самой нагрузки и питающего напряжения, ничего лишнего.


Как можно увидеть, ключевым звеном схемы является микросхема-таймер NE555, которая работает в роли генератора прямоугольных импульсов. Подобный генератор также можно собрать и на паре отдельных транзисторов, но микросхема же обеспечивает большую надёжность работы и стабильность в зависимости от температуры. Резистор R1 — потенциометр, который и будет регулировать мощность. В одном его положении напряжение на нагрузке будет практически равно нуля, а во втором — напряжению питания, так, как будто нагрузка просто подключена напрямую. Этот орган управления можно установить на плате в виде подстроечного резистора, либо вывести на проводах и установить на корпусе с ручкой. Использовать здесь можно практически любой переменный резистор с сопротивлением от 10 до 50 кОм, характеристика должна быть линейной. Резистор R2 задаёт крайнее положение регулировки, установленный на схеме номинал в 1 кОм практически не влияет на границу регулировки. Диоды D1 и D2 — любые кремниевые диоды, например, подойдут дешёвые 1N4148, либо 1N4007. Особое внимание стоит обратить на конденсатор С1, ведь именно от его ёмкости будет зависеть частота работы ШИМ-регулятора. Эта частота может лежать в звуковом диапазоне, то есть быть менее 20 кГц — в этом случае возможно появление высокочастотного свиста от нагрузки. Если после запуска схемы слышен свист — можно уменьшить ёмкость этого конденсатора, в этом случае частота работы схемы просто выйдет за пределы слышимости человеческого уха. Также в этом случае не мешает поставить параллельно выходу схемы конденсатор, ёмкостью 100 нФ, а параллельно с ним электролитический на 100-220 мкФ для подавления пульсаций, то есть интегрирования прямоугольых импульсов. Конденсатор С1 можно использовать керамический, но более предпочтительным вариантом будет плёночный, так как здесь важна термостабильность и изменение ёмкости от температуры может стать критичным. С2 — керамический на 1 нФ.


Q1 на схеме — транзистор, который коммутирует нагрузку, особое внимание стоит уделить выбору этого транзистора, особенно если планирует использование регулятора с мощной нагрузкой. Стандартными вариантами будут распространённые и довольно дешёвые полевые транзисторы IRF740, IRF640, а также более низковольтные IRF3205, IRFZ55. Ключевыми параметрами транзисторов являются максимальный ток, максимальное напряжение (оно должно быть раза в два выше напряжения питания), а также сопротивление открытого канала. Резистор R4 на схеме ограничивает зарядный ток затвора транзистора, а R3 подтягивает затвор к плюсу питания. В данном регуляторе можно применить и биполярный транзистор, хоть он и будет обладать большими потерями и большим нагревом, по сравнению с полевым. Хорошим вариантом будет составной транзистор КТ827, схема с его использованием показана ниже.


А также печатная плата для данной схемы.


Обозначением N в кружке на схеме показана нагрузка, мощность на которой нужно регулировать, это может быть, например, лампочка накаливания, мощные светодиоды, какой-либо нагреватель, электродвигатель, зарядное устройство аккумулятора — практически любая нагрузка постоянного тока. Диод D3 служит для защиты транзистора от выбросов самоиндукции, которые могут возникать при коммутировании нагрузки индуктивного типа. Сюда подойдёт диод 1N4007.

Вся схема выполняется на довольно миниатюрной печатной плате, которая имеет по два контакта с каждой стороны — для подключения нагрузки и питающего напряжения. Также плата имеет посадочное место для установки подстроечного резистора — если используемый вами тип не совпадает с посадочным местом на плате, то можно открыть печатную плату в программе Sprint Layout и подредактировать, файл приложен в архиве в конце статьи. Транзистор можно оставить на плате, если на него не крепится радиатор, в противном же случае его также можно вывести на проводах и посадить на радиатор. Обратите внимание, что все провода для подключения мощной нагрузки нужно брать соответствующего сечения. Ниже показан собранный вариант платы с биполярным транзистором.

Напряжения питания регулятора составляет 9 — 15В, сама схема питается от того же источника, что и коммутируемая нагрузка. Удачной сборки!

shim-reguljator-2-1.rar [6,9 Kb] (скачиваний: 11)
Источник (Source)



Источник

Adblock
detector