Меню

Александр кузнецов водородный генератор

В Подмосковье создали первый в России электролизный генератор сверхчистого водорода

В Подмосковье в наукограде Черноголовка создали генератор водорода для водородной заправочной станции центра компетенций Национальной технологической инициативы «Новые и мобильные источники энергии» при Институте проблем химической физики (ИПХФ) РАН, сообщает пресс-служба Министерства инвестиций, промышленности и науки Московской области.

«Установку производительностью шесть кубометров сверхчистого водорода в час разработали специалисты компании «Поликом», — говорится в сообщении.

Это первый генератор водорода, построенный в России на принципах современной бесщелочной технологии электролиза. Новая установка имеет целый ряд преимуществ перед устаревшими щелочными электролизерами – она более безопасна, гораздо более проста в обслуживании, а конечный продукт не имеет примесей кислорода и щелочи, и соответственно не нуждается в дополнительной очистке.

Новый отечественный электролизный генератор не уступает зарубежным аналогам, а локализация производства в РФ обеспечит более высокую доступность оборудования для отечественных потребителей. Таким образом, установка подмосковной компании может стать ключевым инструментом создания водородной инфраструктуры в России.

Сегодня специалисты компании «Поликом» и центра компетенций НТИ при ИПХФ РАН работают над реализацией проекта автономной заправочной станции для водородного транспорта. Использование водородных топливных элементов позволит существенно сократить потребление ископаемых углеводородных топлив, а также значительно продвинуться в решении экологической проблемы загрязнения атмосферы городов вредными для здоровья человека составляющими выхлопных газов.

Кроме того, водород уже используется на электростанциях для охлаждения мощных электрогенераторов, его применяют в металлургии для получения сверхчистых металлов, в производстве полупроводников, стекольной и пищевой промышленности.

«Актуальность альтернативной энергетики, в том числе водородной, и в России, и в мире в целом, растет с каждым годом. При этом наукоград Черноголовка является одним из главных российских центров компетенций в сфере водородной энергетики. Поэтому продукт подмосковной компании уже сегодня будет востребован на локальном уровне, а в дальнейшем получит необходимую поддержку в продвижении на глобальных профильных рыках. В перспективе, безусловно, эта технология имеет огромный потенциал», — подчеркнула Министр инвестиций, промышленности и науки Московской области Екатерина Зиновьева.

Источник

Компании «Поликом» разработала первый российский генератор сверхчистого водорода

Электролизный генератор сверхчистого водорода, разработанный в компании «Поликом». Источник: «Поликом» © stimul.online

Установка производительностью шесть кубометров в час, которую разработали специалисты компании «Поликом», уже готова к серийному производству. Интернет-журнал об инновациях в России «Стимул» рассказывает об особенностях используемой в ней технологии и перспективах применения установки. Установку проектировали и создавали специально для водородной заправочной станции центра компетенций Национальной технологической инициативы «Новые и мобильные источники энергии» при Институте проблем химической физики (ИПХФ) РАН в Черноголовке.

«Конструкция оказалась настолько удачной, что уже в этом году мы планируем приступить к серийному производству таких установок, — рассказал „Стимулу“ генеральный директор ООО „Поликом“ Евгений Волков. — Для этого у нас в Черноголовке есть собственные производственные мощности. Наши генераторы водорода будут строиться на принципе универсальной платформы. Это означает, что одна и та же основа может быть использована для построения оборудования производительностью от двух до пятнадцати кубометров в час в зависимости от потребностей заказчика. Кроме того, такой принцип позволяет проводить апгрейд с увеличением производительности прямо на предприятии заказчика».

Помимо применения в альтернативной энергетике такие установки востребованы в традиционных сферах. Например, водород используется на электростанциях для охлаждения мощных электрогенераторов, его применяют в металлургии для получения сверхчистых металлов, в производстве полупроводников, стекольной и пищевой промышленности.

«Важно отметить, что созданный нами генератор водорода — это не лабораторный образец, а полноценная установка, которую можно смело размещать на предприятии потребителя, — говорит Евгений Волков. — Конструкция полностью отработана, подобраны качественные и надежные комплектующие, проведены испытания в различных режимах. На это как раз и уходит основное количество времени. От лабораторного образца, собранного „на коленке“, до полноценного „взрослого“ оборудования путь долгий. Основная сложность состоит в том, чтобы установка была достаточно простой для обеспечения надежности и ремонтопригодности, но при этом обладала всем необходимым функционалом. Например, система безопасности нашего оборудования, которая стоит на страже не только самого „железа“, но и здоровья и жизни людей, должна работать безотказно и предотвращать последствия более трех десятков вероятных нештатных ситуаций».

Генеральный директор ООО «Поликом» Евгений Волков. Источник: «Поликом» © stimul.online

ВМЕСТО АГРЕССИВНОЙ ЩЕЛОЧИ — ВОДА

Принцип работы любого генератора водорода на основе электролиза заключается в том, что вода расщепляется под действием электрического тока на водород и кислород. Водород является продуктом, а кислород, как правило, выбрасывается в атмосферу. Разработанные в компании «Поликом» генераторы водорода построены на принципе электролиза на протонообменных мембранах. Его еще называют бесщелочным электролизом, или PEM-электролизом — от словосочетания Proton Exchange Membrane (протонообменная мембрана). Сейчас это наиболее современная технология электролиза.

В отличие от устаревших щелочных электролизеров в таком оборудовании в качестве электролита вместо раствора агрессивной щелочи используется протонообменная мембрана. Она представляет собой прочную пленку, способную пропускать протоны — ядра атомов водорода. Вместо разогретого раствора щелочи высокой концентрации в системе циркулирует только чистая вода. Благодаря этому такой электролизер более долговечен, поскольку в нем нет коррозии компонентов системы — клапанов, датчиков, трубопроводов. Если потребуется ремонт, воду можно просто слить и проводить работы без риска химического ожога.

«Водород, получаемый на наших электролизерах, является сверхчистым не только из-за отсутствия в нем примесей щелочи, — поясняет Евгений Волков. — Благодаря особенности конструкции достигается так называемое дифференциальное давление, то есть давление водорода высокое, а кислорода — низкое. Это позволяет избежать примесей кислорода в водороде прямо в процессе его получения и избавиться от необходимости устанавливать систему доочистки водорода от кислорода, что значительно упрощает конструкцию».

Фактически единственная примесь в водороде, получаемом на оборудовании компании «Поликом», — это пары воды, и то они содержатся в нем в микроколичествах. При этом такая чистота получается исключительно за счет удачно примененных технологических решений и не требует дополнительных энергозатрат.

Технология бесщелочного электролиза широко известна за рубежом и последние пятнадцать-двадцать лет активно развивается. Как правило, потребители, перешедшие на такое оборудование, уже не возвращаются к щелочным электролизерам. Существует несколько западных компаний с опытом производства и поставок таких установок на различные предприятия.

«Мы хорошо знакомы с продукцией практически всех производителей, присутствующих на мировом рынке, — говорит Евгений Волков. — Отмечу, что с технической точки зрения наше оборудование не уступает им ни по одному параметру, а ремонтопригодность и локализованное производство является значительным дополнительным плюсом».

Читайте также:  Генератор кислорода micro 40 af plus

Руководитель Центра компетенций Национальной технологической инициативы «Новые и мобильные источники энергии» Юрий Добровольский. Источник: «Поликом» © stimul.online

СОЗДАТЬ СИСТЕМУ ЗАПРАВОК

Центр компетенций НТИ при ИПХФ РАН в Черноголовке организован для реализации разработок по сквозной технологии создания новых и портативных источников энергии. Руководитель ЦК НТИ, один из ведущих специалистов в области водородных технологий Юрий Добровольский, уже рассказывал «Стимулу» о перспективах водородной отрасли в России и мире. ЦК НТИ работает сразу по нескольким направлениям водородной энергетики, в том числе по созданию специализированных установок для получения водорода из воды с помощью электричества.

«В начале прошлого года мы с помощью наших немецких коллег спроектировали и установили модуль для заправки водородом. На Западе это еще малосерийное, но полноценное производство, и начинать делать подобный продукт с нуля здесь долго, дорого и бессмысленно. Этот заправочный модуль содержит стандартные части, которые оказалось легче купить, нежели разрабатывать с нуля. Кроме того, у нас нет опыта создания водородных заправок, и нам было интересно посмотреть, как это сделают по нашему техническому заданию германские коллеги. Кстати, выяснилось, что это очень близко к тому, как мы себе представляли. И, поскольку сроки изготовления нам тоже были очень важны (в тот момент мы уже тратили огромное время на заправку нашей техники), мы решили поручить работу специалистам», — пояснил в беседе со «Стимулом» Юрий Добровольский.

Модуль состоит из системы компримирования водорода (сжатия с помощью компрессора) и заправочного блока с пистолетом для непосредственной подачи. Пока эта система работает на сжатом водороде, который покупается отдельно. По словам Евгения Волкова, сейчас работают над тем, чтобы совместить электролизер компании «Поликом» и модуль заправочной станции. Когда эти работы будут завершены, заправка сможет работать полностью автономно. При этом останется возможность также подключать баллоны в качестве резерва.

«Приобретение этого модуля помогло нам организовать быструю заправку наших собственных изделий, которые мы делаем в центре компетенций, — рассказал Юрий Добровольский. — Но мы также планируем заправлять с помощью этой системы и других потребителей. Например, водоробусы наших партнеров, которые должны вскоре прибыть в Москву. Кроме того, появляются собственные разработки и во многих организациях, занимающихся транспортом, таких как КамАЗ и НАМИ. Мобильная заправочная станция для их нужд уже готова».

Испытания заправки с электролизным модулем будут проходить на разных видах транспорта — беспилотниках, водородных автобусах, грузовиках и легковых автомобилях, в том числе на беспилотной транспортной платформе, водородный топливный элемент для которой также создан в центре компетенций.

Заведующий лабораторией материалов для водородного аккумулирования энергии ИПХФ Борис Тарасов. Источник: scientificrussia.ru © stimul.online

ЧЕРНОГОЛОВКА КАК ВОДОРОДНАЯ СТОЛИЦА РОССИИ

Водородная инфраструктура для нашей страны — значимый элемент национальной программы развития водородной энергетики. В планах специалистов из Черноголовки — перевести коммунальное хозяйство и транспорт города на водород. Именно отсюда начнется «водородный» путь развития. «Я убежден, что мы выбрали правильное направление. Когда сорок лет назад я только начал заниматься водородной энергетикой, я столкнулся с недопониманием и недоверием к этой сфере, — говорит Борис Тарасов, заведующий лабораторией материалов для водородного аккумулирования энергии ИПХФ. — А сегодня уже разработана государственная политика в этой области. Уверен, что в рамках поддержанной государством программы научная молодежь приложит все свое умение и задор для стремительного, целеустремленного и продуктивного развития водородной энергетики».

В ЦК НТИ надеются, что эта станция станет первым элементом будущей программы «Водородная Россия — 2050» и на ней будет отрабатываться создание водородной инфраструктуры. Разработчики планируют, что такие заправки будут получать водород не только от электролизных модулей, но и используя природный газ и возобновляемые источники энергии. А Черноголовку хотят сделать пилотным городом для отработки водородных технологий в городском коммунальном хозяйстве.

«Почему именно Черноголовка? Это наукоград, где в основном живут люди с соответствующей высокой квалификацией, которые в состоянии и оценить, и помочь с продвижением подобной инициативы, — говорит Юрий Добровольский. — Кроме того, здесь собраны очень квалифицированные научные коллективы и расположен центр компетенций, то есть сложилось отличное профессиональное сообщество, необходимое для отработки водородных технологий. В Черноголовке молодой и очень позитивный мэр, который настроен на развитие города именно как наукограда с такими высокоинтеллектуальными технологиями, как водородные. И он готов их внедрять».

У Черноголовки очень удобное географическое положение: город не слишком удален от Москвы и находится недалеко от трассы Москва — Казань. Но при этом наукоград небольшой, компактный, в нем чуть более 20 тысяч жителей, и результаты внедрения новых технологий здесь будут заметны сразу — и в коммунальном хозяйстве, и на транспорте, и в таких уникальных вещах, как получение «зеленой» энергии из водорода или ВИЭ.

Источник

Водородный генератор своими руками: принцип работы устройства, схемы и описание процесса сборки

Водородный генератор

Электролизер – один из самых распространенных водородных генераторов.

Описание и принцип работы

В общем случае водородный генератор представляет собой набор металлических пластин, погруженных в дистиллированную воду. Конструкция заключена в герметичный корпус с клеммами для подключения источника электропитания и штуцером для вывода газа.

Теоретически работу водородного генератора можно представить следующим образом: между разнополярными пластинами (анод, катод), погруженными в дистиллированную воду, проходит электрический ток. При этом вода расщепляется на кислород и водород. Чем больше площадь пластин, тем больший ток проходит по воде и тем большее количество газов выделяется. Пластины подключаются поочередно (+-+- и т. д).

Область применения

В связи с тем, что сам процесс электролиза связан с использованием большого количества электроэнергии, промышленное применение электролизеров существенно ограничено. Экономически выгоднее использовать для получения водорода химические способы.

В настоящее время водородные генераторы применяют для:

  • газосварки и газорезки водородом в условиях ювелирных мастерских;
  • снижения токсичности двигателей внутреннего сгорания (ДВС) и повышения их КПД (коэффициент полезного действия);
  • повышения КПД и снижению токсичности жидкотопливных котлов.

Устройство

Немногочисленные промышленные электролизеры, которые используют для получения водорода и кислорода, изготавливают в виде стационарных установок. Электроды в них включаются биполярно, причем их количество зависит от способа включения в сеть (трансформаторное или бестрансформаторное).

Конструкции малогабаритных водородных генераторов, которые выпускаются как отечественными, так и зарубежными компаниями и используются для повышения КПД ДВС и других целей, отличаются большим разнообразием. Кроме того существует огромное количество конструкций, изготовленных своими руками. В сети Интернет о них можно найти достаточно много информации.

Читайте также:  Подшипник генератора митсубиси спейс стар размер

Учитывая, что конструкция электролизера отличается простотой и его нетрудно изготовить собственноручно, рассмотрим конструкции нескольких подобных устройств:

  1. Простейший электролизер.
  2. Водородный генератор для автомобиля.

Немного о доверчивости и наивности

Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.

Отечественный опыт строительства водородных генераторов в домашних условиях ↑

А что у нас, в среде отечественных «кулибиных»? Интернет-форумы полны споров о возможности постройки генератора водорода своими руками. Адепты гидрогениума тычут в глаза скептикам фотками самогонных аппаратов, переделанных в установки по производству чистого топлива. Скептики: покажите конкретный пример постоянно работающего устройства. В ответ — тишина. Кто-то что-то собрал, подключил к кухонной плите, пожарил на водороде яичницу, съел. Теперь вот стоит в сарае, а к плите опять подключен газ, это проще, дешевле, безопаснее. Правда, умные люди всё же извлекают из «диванной» гидрогениумной энергетики пользу: завлекательные посты обеспечивают владельцев аккаунтов лайками, большим числом просмотров и подписчиков, что приносит неплохие деньги.

Если кто-то из читателей хочет повторить опыт гаражных мастеров, то, пожалуйста, вот достаточно подробное описание конструкции «самопального» водородного реактора. Ничего сложного.

В этом ролике нам красиво показывают, как мелкосерийное отечественное устройство обслуживает два десятка радиаторов, но не называют ни его тепловую мощность, ни себестоимость килокалории тепла.

Меры безопасности

Электролизерные установки представляют собой устройства повышенной опасности. Поэтому в процессе их изготовления, монтажа и эксплуатации необходимо строго соблюдать как общие, так и специальные меры безопасности.

Среди специальных требований наиболее важными являются:

  1. Не допускается образование взрывоопасных концентраций смеси кислорода с водородом или воздухом.
  2. Не допускается работа водородных генераторов, если в его смотровом окне не виден уровень жидкости.
  3. При выполнении ремонтных работ необходимо убедиться в полном отсутствии водорода в конечной точке системы.
  4. Возле электролизеров не разрешается пользоваться открытым огнем, электрическими нагревательными приборами и переносными лампами напряжением более 12 В.
  5. При работе с электролитом необходимо пользоваться спецодеждой, перчатками и очками.

  1. Специалисты не рекомендуют самостоятельно изготавливать автомобильные водородные генераторы. Мотивируется это тем, что автомобильный электролизер представляет собой достаточно сложное и небезопасное устройство, при изготовлении которого необходимо использовать специальные материалы и реагенты.
  2. При самостоятельной установке в автомобиль электролизера, изготовленного своими руками, необходимо исключить возможность попадания газа в камеру сгорания топливо-воздушной смеси при заглушенном двигателе. При выключении двигателя в обязательном порядке водородный генератор должен автоматически отключаться от сети электропитания автомобиля.
  3. При самостоятельном изготовлении автомобильного электролизера не забудьте оснастить его специальным водяным клапаном – барботером. Его использование позволит значительно повысить безопасность эксплуатации автомобиля.

Еще средневековый ученый Парацельс во время одного из своих экспериментов заметил, что при контакте серной кислоты с феррумом образуются воздушные пузырьки. В действительности то был водород (но не воздух, как считал ученый) – легкий бесцветный газ, не имеющий запаха, который при определенных условиях становится взрывоопасным.

В нынешнее время
отопление водородом своими руками

– вещь весьма распространенная. Действительно, водород можно получать практически в неограниченном количестве, главное, чтобы были вода и электроэнергия.

Такой способ отопления был разработан одной из итальянских компаний. Водородный котел работает, не образуя никаких вредных отходов, из-за чего считается самым экологическим и бесшумным способом обогрева дома. Инновация разработки в том, что ученым удалось добиться сжигания водорода при относительно низкой температуре (порядка 300ᵒС), а это позволило изготавливать подобные отопительные котлы из традиционных материалов.

При работе котел выделяет только безвредный пар, и единственное, что требует затрат – это электроэнергия. А если совместить такое с солнечными панелями (гелиосистемой), то эти расходы можно и вовсе свести к нулю.

Как же все происходит? Кислород вступает в реакцию с водородом и, как мы помним из уроков химии в средних классах, образует молекулы воды. Реакция провоцируется катализаторами, в результате выделяется тепловая энергия, нагревающая воду примерно до 40ᵒС – идеальной температуры для «теплого пола».

Регулировка мощности котла позволяет добиться определенного температурного показателя, необходимого для отопления помещения с той или иной площадью. Также стоит отметить, что такие котлы считаются модульными, т. к. состоят из нескольких независимых друг от друга каналов. В каждом из каналов имеется упомянутый выше катализатор, в результате в теплообменник поступает теплоноситель, уже достигший необходимого показателя в 40ᵒС.

Критика водородного транспорта

  • Смесь водорода с воздухом взрывоопасна. Водород более опасен, чем бензин, так как горит в смеси с воздухом в более широком диапазоне концентраций. Бензин не горит при лямбда менее 0,5 и более 2, водород при таких соотношениях горит великолепно. Но водород, хранящийся в баках при высоком давлении, в случае пробоя бака очень быстро испаряется. Для транспорта разрабатываются специальные безопасные системы хранения водорода — баки с многослойными стенками, из специальных материалов и т. д. (К примеру, бак из нанотрубок, заполненных водородом.) Но всё равно это в целом удорожает весь цикл эксплуатации транспортного средства, ложась расходами на плечи потребителя.
  • Водородная силовая установка на базе традиционного ДВС значительно сложнее и дороже в обслуживании, чем обычный ДВС (особенно дизельный). По данным Массачусетского технологического института, эксплуатация водородного автомобиля на данном этапе развития водородных технологий обходится в сто раз дороже, чем бензинового.
  • Пока нет достаточного опыта эксплуатации водородного транспорта.
  • Нет возможности быстрой дозаправки в пути из канистры или от другого автомобиля.
  • Для заправки водородом требуется построить сеть заправочных станций. Для заправочных станций, заправляющих автомобили жидким водородом, стоимость оборудования выше, чем для заправочных станций, заправляющих автомобили жидким топливом (бензином, этанолом и дизельным топливом). (Согласно GM, строительство 12 тысяч водородных заправочных станций в 2005 году оценивалось в $12 млрд, то есть $1 млн на одну заправочную станцию, в то время как комплект оборудования для бензиновых заправочных станций стоит от $40 тыс., в среднем $100-200 тыс.) .
  • Цена 8 евро за литр (500 руб)..
  • Летучесть водорода самая высокая среди газов. Таким образом, водород трудно сохранить в жидком виде, это затрудняет хранение водорода, транспортировку и использование в баке, так как топливо полностью испарится из бака за короткое время. За девять дней испаряется полбака топлива BMW Hydrogen
  • В настоящий момент водород производится путём расхода значительного количества электроэнергии
Читайте также:  Проверка таблетки генератора мультиметром

Критерии выбора водородного генератора

Более безопасными характеристиками обладает водородное оборудование, изготовленное в промышленных условиях. Процесс производства учитывает показатели тестовых запусков образцов, ряда экспериментов и других научно-исследовательских мероприятий. Тогда как в домашних условиях выполняется лишь механическая сборка. Поэтому специалисты настоятельно рекомендуют приобретать котлы в специализированных магазинах, где покупка защищена гарантиями производителя.

• особенности монтажа и эксплуатации.

Кроме того, следует учесть репутацию производителя. Для этого рекомендуется предварительно ознакомиться с отзывами покупателей и отследить рейтинг самых популярных компаний. Перед приобретением нужно осмотреть корпус и доступные для обзора элементы на предмет целостности. Если производитель гарантий не даёт, от покупки такой модели стоит отказаться.

Технические характеристики

Чистота водорода в пересчете на сухой газ, % об 99,9999
Концентрация водяных паров при 20OС и 1атм, не более, ppm, 5
Суммарная производительность по водороду, приведенная к нормальным условиям, не менее, л/ч, 12
Диапазон задаваемого выходного давления водорода, ати, от 3,0 до 6,1
Стабильность выходного давления водорода, не хуже, ати, ±0,02
Время установления рабочего режима, при заглушенном выходе не более, мин, 30
Объем заливаемой дистиллированной воды, л, 1,0
Расход дистиллированной воды, не более, л/час, 0,02
Потребление воды, г/л водорода, 1,6
Средний ресурс сменного картриджа деионизационного фильтра (при максимальной производительности и односменной работе), лет, не менее, 1
Средняя потребляемая мощность:
в стационарном режиме, не более, ВА, 180
максимальная (при запуске), не более, ВА, 220
Габаритные размеры генератора, (ширина x глубина x высота), не более, мм, 230х470х450
Масса генератора. не более, кг, 16
Рабочие условия:
температура окружающего воздуха, °С, от +10 до +35
питание от однофазной сети переменного тока напряжением, В, 220 (+10 –15)%
и частотой, Гц, 50 +1
Генератор по электробезопасности соответствует требованиямs класса 1, тип Н по ГОСТ 12.2.025-76

Дополнительные технические характеристики

Контроль качества воды, заливаемой в питающий бак +
Встроенная система водоподготовки (контроль и автоматическая очистка воды, питающей электролизный модуль) +
Встроенная система автоматической регенерации фильтров тонкой очистки водорода +
Контроль влажности производимого водорода +
Контроль разгерметизации +
Возможность включения режима «СДУВКА» +
Отображение информации о работе, отдельных параметрах, неисправностях на дисплее +

Немного истории

Принцип действия водородной энергии был отмечен еще в древние времена. Известный врачеватель Парацельс при проведении своих научных экспериментов заметил, что при соединении некоторых элементов образуются пузырьки, которые он в то время принял за воздух. Позже выяснилось, что это был водород, представляющий собой газ без цвета, при определенных условиях проявляющий взрывные свойства.

В настоящее время водород научились использовать в разных целях, в том числе – для отопления жилого дома или любых других сооружений. Эти технологии активно развивают и внедряют во множестве отраслей. Являясь новшеством на рынке научных разработок, обогрев водородом уже заинтересовал многих потребителей и продолжает набирать популярность среди широких масс.

Доказано, что водород считается не только довольно распространенным, но и легкодоступным веществом. Единственная сложность – его приходится добывать из химических соединений, чаще всего – воды.

Кислородно водородная горелка своими руками

Так вот, это то же самое, только мощнее на два-три порядка. Эта хренотень даёт мощный, чрезвычайно горячий язык пламени тупо из воды со щёлочью. Никаких баллонов с газами, никаких редукторов, заправок и прочей мути — только подай напряжение. А если надуть ей шарик, и отпустить его с горящей ниткой…

Что нужно для получения более-менее мощного потока газа? Правильно, большая площадь электродов, причём объём газа в секунду ей прямо пропорционален. Не буду вдаваться в расчёты, тем более что сам я их не проводил, просто сообщу оптимальные параметры. Суммарная площадь электродов для достойного внимания потока газа должна быть не менее 1000 см^2 (суммарно по аноду и катоду), желательно — от 2000 см^2. Плотность тока должна быть порядка 0.08-0.15А/см^2 (8-15А/дм^2): при большем токе будет иметь место перегрев электролита и закипание — то есть, пена, тысячи её; при меньшем — теряем в газовыделении. Падение на одной паре электродов для такого тока получается 2-3 вольта, в зависимости от концентрации электролита (я взял 10%, это соответствует примерно 2.2-2.3 вольта падения). При таких обстоятельствах качать две огромных пластины сотнями ампер тока при двух вольтах представляется не очень разумным решением. Гораздо лучше соединить несколько ячеек последовательно: тогда мы сможем увеличить рабочее напряжение и площадь электродов во много раз при том же токе. А теперь осталось только сообразить, что одна пластина электрода может быть с одной стороны катодом одной ячейки, а с другой — анодом другой. Короче, просто набираем бигмак из чередующихся кольцеобразными прокладками пластин. Больше пластин — больше напряжение при том же токе; больше площадь одной каждой пластины — больший ток при том же напряжении. Увеличение числа пластин увеличивает суммарное падение на них напряжения. На схеме всё понятно видно.

В каждой пластине необходимо проделать отверстия снизу и сверху на расстояниях чуть меньше диаметра прокладки друг от друга (но не менее 0.5-1 см от края прокладки) — для газообмена и для распределения электролита по ячейкам. Хватит где-то 5 мм сверла.

Щёлочь. Подойдёт NaOH или KOH, желательно чистый, а не технический. Начинать с концентрации 10% по массе (в дистиллированной воде), дальше экспериментировать. Выше концентрация — выше ток, но больше пены.

Стягивающие пластины. Требуется нечто очень слабо гнущееся и жёсткое. Идеально и классика постройки — толстое, двухсантиметровое оргстекло. В нём же можно проделать выводы и резьбу под газ и доп. топливный бачок. У меня не было оргстекла, я просто впаял медные трубки в последнюю нержавеющую пластину, а для стяжек использовал 27 мм фанеру.

Перво-наперво следует сделать водный затвор. Водород-кислородная смесь, HHO, невероятно злая штуковина. Она с лёгкостью детонирует, да и сгорает весьма резво, не требуя притом никаких окислителей (кислород-то есть).

Источник

Adblock
detector