Меню

Авиационный генератор переменного тока

САМОЛЕТНЫЕ ГЕНЕРАТОРЫ ПЕРЕМЕННОГО ТОКА

Все потребители электроэнергии на ВС можно разделить на четыре группы: безразличие к роду тока; требующие для своего питания переменный ток, но допускающие отклонения частоты в определенных пределах; требующие для своего питания переменный

ток стабильной частоты; постоянного тока.

Первые три группы потребителей по использованию электрической мощности являются основными. Если перевести на переменный ток и электропривод, который еще работает на постоянном токе, система переменного тока может удовлетворять около 95% потребителей мощности и только 5% мощности необходимо преобразовать в постоянный ток. С точки зрения упрощения системы электроснабжения, унификации электроустановок и получения возможности параллельной работы генераторов переменного тока наиболее целесообразной является система переменного тока стабильной частоты.

Сравнительно недавно для питания всех потребителей переменного тока использовались электромашинные преобразователи постоянного тока в переменный. Сейчас такие преобразователи в большинстве случаев, особенно на тяжелых самолетах и вертолетах, обслуживают только те потребители, которые требуют стабильной частоты и служат аварийными источниками. Питание же ряда мощных потребителей, безразличных к роду тока или требующих для своего питания переменный ток, допускающий изменение частоты, осуществляется от генераторов переменного тока нестабильной частоты.

Применение синхронных генераторов нестабильной частоты позволило за счет перевода ряда потребителей на питание от них

уменьшить устанавливаемую мощность генераторов постоян-ного тока, а следовательно, облегчить условия коммутации на высоте и улучшить их охлаждение. Кроме того, уменьшились мощность и количество преобразователей постоянного тока в переменный, имеющих низкий коэффициент полезного действия и относительно большую массу.

На ВС синхронные генераторы получают вращение от привода,

который обеспечивает постоянную частоту вращения ротора, что позволяет применять параллельную работу синхронных генераторов и повысить надежность работы таких систем.

Генератор— устройство, аппарат или машина вырабатывающие электрическую энергию.

По принципу действия авиационные генераторы не отличаются от аналогичных наземных генераторов, но обладают рядом особенностей: малый вес и габариты, большая плотность тока якоря, принудительное воздушное, испарительное или жидкостное охлаждение, высокая частота вращения ротора, применение высококачественных конструкционных материалов. В качестве источников постоянного тока обычно применяют бесконтактные синхронные генераторы и бесколлекторные генераторы различных типов и синхронные генераторы переменного тока. Генераторы устанавливаются на двигателях и вспомогательных силовых установках (ВСУ), при этом частота вращения турбовинтовых двигателей самолётов и вертолётов стабилизирована изменением шага винта, а вот на турбореактивных двигателях частота вращения ротора может меняться в широких пределах и при жёстком механическом приводе на генератор переменного тока частота также существенно изменяется, что часто недопустимо по ТУ потребителей.

Поэтому электрические сети строят по разным принципиальным схемам. Построение сети зависит от назначения ЛА, его конструктивных особенностей и применяемого оборудования. Например, на самолёте Ту-134 в качестве основных источников электроэнергии применяются генераторы постоянного тока на двигателях, а для питания переменным током стабильной частоты 208/115 вольт 400 гц применяются электромашинные преобразователи.

Применение на летательных аппаратах переменного тока вместо постоянного дает возможность повысить напряжение в системе электроснабжения до 200-400 В и тем самым снизить передаваемые токи, а следовательно, и массу бортовой сети; применить безколлекторные генераторы и электродвигатели, которые более надежны, чем коллекторные машины; получить постоянный ток с помощью трансформаторно-выпрямительных блоков, имеющих высокий КПД. Поэтому на современных самолетах применение переменного тока вместо постоянного, находит широкое распространение.

Однако применение только переменного тока на самолетах связано с рядом трудностей:

· для многих потребителей требуется ток стабильной частоты

· поскольку скорость вращения авиадвигателя переменная, то для получения стабильной частоты генератора требуется редуктор с плавно изменяющимся передаточным отношением

· сложность осуществления параллельной работы генераторов переменного тока

· малые пусковые моменты электродвигателей переменного тока

Читайте также:  Генератор чисел питон код

· сложность регулирования скорости вращения мощных электродвигателей переменного тока

Генераторы переменного тока.Основными типами являются генераторы СГ, СГК, СГО, СГС, ГТ и ГО. Буквы в условных обозначениях расшифровываются следующим образом:

С самолётный
Г генератор
К комбинированный
О однофазный
С (вторая) синхронный
Т трёхфазный

Цифры обозначают номинальную мощность генератора.

Синхронные генераторы имеют закрытое исполнение, фланцевое крепление и охлаждаются воздухом, продуваемым через полость генератора. Частота тока жестко связана со скоростью вращения. Поэтому в системах переменного тока стабильной частоты применяются специальные приводы постоянной частоты вращения, в качестве которых используются гидравлические, дифференциальные, гидромеханические, воздушно-турбинные, турбомеханические и электромашинные приводы.

Генераторы переменного тока бывают контактные и бесконтактные. В последнее время все более широкое распространение начинают находить бесконтактные безщеточные генераторы (ГТ-30П46, ГТ-30П48, ГТ-40П48, ГТ-60П48, ГТ-120ПЧ6, СГК-11/1,5 КИС, СГК-30/1,5).

Стабилизация напряжения генераторов переменного тока независимо от частоты вращения и величины нагрузки осуществляется так же, как и у генераторов постоянного тока, путем изменения тока возбуждения. Для регулирования напряжения синхронных генераторов используются угольные, транзисторные, тиристорные регуляторы и регуляторы на магнитных усилителях..

Для защиты сети от перенапряжения применяют автоматы защиты сети переменного тока АЗП1-3СД (для трехфазного), АЗП1-1СД, АЗП1-1СДТ (для однофазного).

В системах защиты по частоте в качестве чувствительных элементов используются резонансные контуры или дроссели насыщения, реагирующие на частоту и управляющие работой генераторов с помощью мостовой схемы или магнитного усилителя.

Включение синхронного генератора в сеть производится автоматически с помощью синхронизатора, состоящего из выпрямительного моста, конденсатора и ряда реле. Схема подключает генератор к сети, когда выполняются все перечисленные выше условия.

После включения генераторов на параллельную работу необходимо обеспечить автоматическое распределение между ними активных и реактивных мощностей (нагрузок).

Активной называется мощность, которая отбирается генераторами от привода и преобразуется в потребителях электрической энергии. Равномерное распределение активных мощностей достигается воздействием на привод через регуляторы скорости вращения.

Реактивной называется мощность, которая в течение одного полупериода отдается генератором в сеть, накапливается в магнитных полях индуктивных катушек (или емкостях), а в течение другого полупериода возвращается в генератор. Среднее значение мощности за период оказывается равным нулю. Равномерное распределение реактивных мощностей между генераторами достигается воздействием на возбуждение параллельно работающих генераторов через регуляторы напряжения. Для уравнивания токов возбуждения параллельно работающих генераторов в регуляторах напряжения имеются корректирующие обмотки.

Комбинированные устройства. В последнее время находят все большее применение комбинированные устройства, обеспечивающие включение генераторов в сеть, регулирование их напряжения, защиту от коротких замыканий и обрывов в цепи генератора, а также сигнализацию отключения генератора от бортсети. К ним относятся коробки типа КВР-1М, КВР-3-2Ф, КВР-11. Кроме гого, в системе защиты и регулирования напряжения генераторов переменного гока применяются программные механизмы (ПМК-14, ПМК-1113А), предназначенные для автоматического отключения генераторов от сети при коротких замыканиях внутри генераторов и на участках сети.

Особенности параллельной работы генераторов переменного тока. По сравнению с параллельной работой генераторов постоянного тока параллельная работа синхронных генераторов имеет ряд особенностей: при включении генератора переменного тока порядок следования фаз и ЭДС генератора должны соответствовать порядку следования фаз сети; ЭДС и частота по величине должны быть примерно равны напряжению и частоте сети; фазы ЭДС должны совпадать с фазой напряжения сети.

Источник

Авиационные генераторы переменного тока

Более высокая удельная генерируемая мощность, отсутствие щеточно-коллекторных узлов, повышенная высотность, надежная эксплуатация, простота преобразования рода тока и величины напряжения позволили широко применять на самолетах в каче­стве основной систему переменного тока. Первичными источниками энергоснабжения являются генераторы переменного тока.

Электрические машины переменного тока разделяются на два класса: синхронные машины, которые преимущественно применяются как генераторы переменного тока, и асинхронные машины, используемые в основном в качестве двигателей переменного тока.

Читайте также:  Замена ремня генератора лада гранта акпп

На ВС синхронные генераторы получают вращение от привода, который обеспечивает постоянную частоту вращения ротора, что позволяет применять параллельную работу синхронных генерато­ров и повысить надежность работы таких систем.

На самолетах применяют синхронные гене­раторы переменного тока. Принцип действия синхронного гене­ратора подобен принципу действия генератора постоянного тока. Синхронный генератор состоит из двух основных узлов: ротора и индуктора. Якорная обмотка обычно монтируется в роторе, а ин­дуктор в статоре.

Синхронный генератор-генератор переменного тока, частота f которого пропорциональна числу пар полюсов p и частоте вращения ротора генератора n:

f=

Синхронные генераторы бывают трехфазные и однофазные.

Действующее значение ЭДС Е синхронного генератора пропорционально частоте переменного тока f, числу витков w, основному магнитному потоку полюсов Ф и обмоточному коэффициенту kОБ:

Где: Е – ЭДС в фазе; f – частота ЭДС; w – число витков в фазе якоря; Ф – магнитный поток одного полюса.

Частота ЭДС зависит от частоты вращения ω якоря, числа пар полюсов 2р, т.е.

Генераторы серий СГО и СГС выполнены по схеме с независимым возбуждением, а генераторы серии ГТ — по схеме самовозбуждения.

Бесконтактный синхронный генератор переменного тока:

принципиальная электрическая схема генератора;

Генератор основной. Выпрямитель

Генератор представляет собой каскадную схему, состоящую из трех электрических агрегатов, роторы которых смонтированы на одном валу: основного генератора с вращающимся индукто­ром 5, синхронного возбудителя с якорем 17 и полюсами на ста­торе 15 и трехфазного подвозбудителя со статором 6 и ротором 5 с постоянными магнитами.

При вращении общего вала магнитные поля ротора подвозбу­дителя наводят в обмотках СП его статора трехфазный перемен­ный ток. Стационарным выпрямителем, находящимся в блоке регулирования напряжения БРН, он преобразуется в постоянный и поступает в обмотку возбуждения СВ возбудителя смонтированную в его статоре. При вращении ротора возбудителя в магнитном поле, образованном током индуктора, в обмотке ротора возбудителя наводится трехфазный переменный ток. Вращающимся выпрямителем он преобразуется в постоянный ток, достаточный для возбуждения основного генератора. Этот ток подается в обмотку возбуждения основного генератора, смонтированную во вращающемся индукторе. Образующееся магнитное поле, пересекая обмотки неподвижного якоря генератора, индуктирует в них трехфазный переменный ток частоты 400Гц, который поступает в бортовую сеть самолета.

Источник

Авиационные генераторы переменного тока

Применение на летательных аппаратах переменного тока вместо постоянного дает возможность повысить напряжение в системе электроснабжения до 200-400В и тем самым снизить передаваемые токи, а следовательно, и массу бортовой сети; применить безколлекторные генераторы и электродвигатели, которые более надежны, чем коллекторные машины; получить постоянный ток с помощью трансформаторно-выпрямительных блоков, имеющих высокий КПД. Поэтому на современных самолетах применение переменного тока вместо постоянного, находит широкое распространение.

Однако применение только переменного тока на самолетах связано с рядом трудностей:

-для многих потребителей требуется ток стабильной частоты поскольку скорость вращения авиадвигателя переменная, то для получения стабильной частоты генератора требуется редуктор с плавно изменяющимся передаточным отношением;

-сложность осуществления параллельной работы генераторов переменного тока

малые пусковые моменты электродвигателей переменного тока;

-сложность регулирования скорости вращения мощных электродвигателей переменного тока.

Генераторы переменного тока. Основными типами являются генераторы СГ, СГК, СГО, СГС, ГТ и ГО. Буквы в условных обозначениях расшифровываются следующим образом:

С самолётный
Г генератор
К комбинированный
О однофазный
С (вторая) синхронный
Т трёхфазный

Цифры обозначают номинальную мощность генератора.

Частота тока жестко связана со скоростью вращения. Поэтому в системах переменного тока стабильной частоты применяются специальные приводы постоянной частоты вращения, в качестве которых используются гидравлические, дифференциальные, гидромеханические, воздушно-турбинные, турбомеханические и электромашинные приводы.

Читайте также:  Генератор без шкива krauf aln3763dd

Генераторы переменного тока бывают контактные и бесконтактные. В последнее время все более широкое распространение начинают находить бесконтактные безщеточные генераторы (ГТ-30П46, ГТ-30П48, ГТ-40П48, ГТ-60П48, ГТ-120ПЧ6, СГК-11/1,5 КИС, СГК-30/1,5).

Стабилизация напряжения генераторов переменного тока независимо от частоты вращения и величины нагрузки осуществляется так же, как и у генераторов постоянного тока, путем изменения тока возбуждения. Для регулирования напряжения синхронных генераторов используются угольные, транзисторные, тиристорные регуляторы и регуляторы на магнитных усилителях.

Для защиты сети от перенапряжения применяют автоматы защиты сети переменного тока АЗП1-3СД (для трехфазного), АЗП1-1СД, АЗП1-1СДТ (для однофазного).

В системах защиты по частоте в качестве чувствительных элементов используются резонансные контуры или дроссели насыщения, реагирующие на частоту и управляющие работой генераторов с помощью мостовой схемы или магнитного усилителя.

Включение синхронного генератора в сеть производится автоматически с помощью синхронизатора, состоящего из выпрямительного моста, конденсатора и ряда реле. Схема подключает генератор к сети, когда выполняются все перечисленные выше условия.

После включения генераторов на параллельную работу необходимо обеспечить автоматическое распределение между ними активных и реактивных мощностей (нагрузок).

Активной называется мощность, которая отбирается генераторами от привода и преобразуется в потребителях электрической энергии. Равномерное распределение активных мощностей достигается воздействием на привод через регуляторы скорости вращения.

Реактивной называется мощность, которая в течение одного полупериода отдается генератором в сеть, накапливается в магнитных полях индуктивных катушек (или емкостях), а в течение другого полупериода возвращается в генератор. Среднее значение мощности за период оказывается равным нулю. Равномерное распределение реактивных мощностей между генераторами достигается воздействием на возбуждение параллельно работающих генераторов через регуляторы напряжения. Для уравнивания токов возбуждения параллельно работающих генераторов в регуляторах напряжения имеются корректирующие обмотки.

Комбинированные устройства. В последнее время находят все большее применение комбинированные устройства, обеспечивающие включение генераторов в сеть, регулирование их напряжения, защиту от коротких замыканий и обрывов в цепи генератора, а также сигнализацию отключения генератора от бортсети. К ним относятся коробки типа КВР-1М, КВР-3-2Ф, КВР-11. Кроме того, в системе защиты и регулирования напряжения генераторов переменного тока применяются программные механизмы (ПМК-14, ПМК-1113А), предназначенные для автоматического отключения генераторов от сети при коротких замыканиях внутри генераторов и на участках сети.

Особенности параллельной работы генераторов переменного тока. По сравнению с параллельной работой генераторов постоянного тока параллельная работа синхронных генераторов имеет ряд особенностей: при включении генератора переменного тока порядок следования фаз и ЭДС генератора должны соответствовать порядку следования фаз сети; ЭДС и частота по величине должны быть примерно равны напряжению и частоте сети; фазы ЭДС должны совпадать с фазой напряжения сети.

Основные ТТД синхронных генераторов типа СГК

Основные ТТД синхронных генераторов типа ГО и ГТ

ГО-16ПЧ8 ГТ-16ПЧ8 ГТ-40ПЧ8 ГТ-60ПЧ8АТВ ГТ-120ПЧ6 Способ соединения обмоток звезда звезда звезда звезда звезда Напряжение линейное, В 208 208 208 208 208 Мощность, кВА 16 16 40 60 208 Ток нагрузки (фазы), А 133 44,5 111 167 333 Коэффициент мощности 0,85 0,85 0,8 0,8 0,8 Рабочая частота, Гц 396-404 400 392-408 400 400 Частота вращения, об/мин 7920-8080 8000 7840-8160 8000 6000 Напряжение возбуждения, В 26-30 42 26-30 — 43-49 Ток возбуждения, А 25 2 самовозбуждение 2,5 2,9 Масса генератора, кг 27,5 16 47 59 85 Комутационная, защитная и регулирующая аппаратура РН-600, КВР-2, КОЧ-1А, АЗП1-1СД, ВС-33 — БРН-62, БРЧ-62, БТТ-62,БЗУ-62 БРН-208МТА, БЗУ-376СП, БТТ-40Б БРЗУ-115/ВА, БТТ-120

Основные ТТД синхронных генераторов типа СГС, СГО, СГК

Дата добавления: 2018-02-18 ; просмотров: 1339 ; Мы поможем в написании вашей работы!

Источник

Adblock
detector