Меню

Автоколебания автоколебательная система генератор незатухающих электромагнитных колебаний

§ 36. Генератор на транзисторе. Автоколебания

Вынужденные колебания, которые мы рассматривали до сих пор, возникают под действием переменного напряжения, вырабатываемого генераторами на электростанциях. Такие генераторы не могут создавать колебания высокой частоты, необходимые для радиосвязи. Потребовалась бы чрезмерно большая скорость вращения ротора. Колебания высокой частоты получают с помощью других устройств, например с помощью генератора на транзисторе. Он назван так потому, что одной из основных его частей является полупроводниковый прибор — транзистор.

Автоколебательные системы. Незатухающие вынужденные колебания нередко поддерживаются в цепи действием внешнего периодического напряжения. Но возможны и другие способы получения незатухающих колебаний.

Пусть в системе, в которой могут существовать свободные электромагнитные колебания, имеется источник энергии. Если сама система будет регулировать поступление энергии в колебательный контур для компенсации потерь энергии на резисторе, то в ней могут возникнуть незатухающие колебания.

Системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника внутри самой системы, называются автоколебательными. Незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил, называются автоколебаниями.

Генератор на транзисторе — пример автоколебательной системы. Он состоит из колебательного контура с конденсатором емкостью С и катушкой индуктивностью L, источника энергии и транзистора.

Как создать незатухающие колебания в контуре? Известно, что если конденсатор колебательного контура зарядить, то в контуре возникнут затухающие колебания. В конце каждого периода колебаний заряд на пластинах конденсатора имеет меньшее значение, чем в начале периода. Суммарный заряд, конечно, сохраняется (он всегда равен нулю), но происходит уменьшение положительного заряда одной пластины и отрицательного заряда другой на равные по модулю значения. В результате энергия колебаний уменьшается, так как она согласно формуле (4.1) пропорциональна квадрату заряда одной из пластин конденсатора. Чтобы колебания не затухали, нужно компенсировать потери энергии за каждый период.

Пополнять энергию в контуре можно, подзаряжая конденсатор. Для этого надо периодически подключать контур к источнику постоянного напряжения. Конденсатор должен подключаться к источнику только в те интервалы времени, когда присоединенная к положительному полюсу источника пластина заряжена положительно, а присоединенная к отрицательному полюсу — отрицательно (рис. 4.21). Только в этом случае источник будет подзаряжать конденсатор, пополняя его энергию.

Если же ключ замкнуть в момент, когда присоединенная к положительному полюсу источника пластина имеет отрицательный заряд, а присоединенная к отрицательному полюсу — положительный, то конденсатор будет разряжаться через источник (рис. 4.22). Энергия конденсатора при этом будет убывать.

Следовательно, источник постоянного напряжения, постоянно подключенный к конденсатору контура, не может поддерживать в нем незатухающие колебания, так же как постоянная сила не может поддерживать механические колебания. В течение половины периода энергия поступает в контур, а в течение следующей половины периода возвращается в источник. В контуре незатухающие колебания установятся лишь при условии, что источник будет подключаться к контуру в те интервалы времени, когда возможна передача энергии конденсатору. Для этого необходимо обеспечить автоматическую работу ключа (или клапана, как его часто называют). При высокой частоте колебаний ключ должен обладать надежным быстродействием. В качестве такого практически безынерционного ключа и используется транзистор.

Транзистор, напомним, состоит из трех различных полупроводников: эмиттера, базы и коллектора. Эмиттер и коллектор имеют одинаковые основные носители заряда, например дырки (это полупроводник p-типа), а база имеет основные носители противоположного знака, например электроны (полупроводник n-типа). Схематическое изображение транзистора показано на рисунке 4.23.

Работа генератора на транзисторе. Упрощенная схема генератора на транзисторе показана на рисунке 4.24. Колебательный контур соединен последовательно с источником напряжения и транзистором таким образом, что на эмиттер подается положительный потенциал, а на коллектор — отрицательный. При этом переход эмиттер — база (эмит- терный переход) является прямым, а переход база — коллектор (коллекторный переход) оказывается обратным, и ток в цепи не идет. Это соответствует разомкнутому ключу на рисунках 4.21, 4.22.

Чтобы в цепи контура возникал ток и подзаряжал конденсатор контура в ходе колебаний, нужно сообщать базе отрицательный относительно эмиттера потенциал, причем в те интервалы времени, когда верхняя (см. рис. 4.24) пластина конденсатора заряжена положительно, а нижняя — отрицательно. Это соответствует замкнутому ключу на рисунке 4.21.

В интервалы времени, когда верхняя пластина конденсатора заряжена отрицательно, а нижняя — положительно, ток в цепи контура должен отсутствовать. Для этого база должна иметь положительный потенциал относительно эмиттера.

Таким образом, для компенсации потерь энергии колебаний в контуре напряжение на эмиттерном переходе должно периодически менять знак в строгом соответствии с колебаниями напряжения на контуре. Необходима, как говорят, обратная связь.

Обратная связь в рассматриваемом генераторе — индуктивная. К эмиттерному переходу подключена катушка индуктивностью LCB, индуктивно связанная с катушкой индуктивностью L контура. Колебания в контуре вследствие электромагнитной индукции возбуждают колебания напряжения на концах катушки, а тем самым и на эмиттерном переходе. Если фаза колебаний напряжения на эмиттерном переходе подобрана правильно, то «толчки» тока в цепи контура действуют на контур в нужные интервалы времени, и колебания не затухают. Напротив, амплитуда колебаний в контуре возрастает до тех пор, пока потери энергии в контуре не станут точно компенсироваться поступлением энергии от источника. Эта амплитуда тем больше, чем больше напряжение источника. Увеличение напряжения приводит к усилению «толчков» тока, подзаряжающего конденсатор.

Генераторы на транзисторах широко применяются не только во многих радиотехнических устройствах: радиоприемниках, передающих радиостанциях, усилителях ит.д., но и в современных электронно-вычислительных машинах.

Основные элементы автоколебательной системы. На примере генератора на транзисторе можно выделить основные элементы, характерные для многих автоколебательных систем (рис. 4.25).

1. Источник энергии, за счет которого поддерживаются незатухающие колебания (в генераторе на транзисторе это источник постоянного напряжения).

2. Колебательная система — та часть автоколебательной системы, непосредственно в которой происходят колебания (в генераторе на транзисторе это колебательный контур).

3. Устройство, регулирующее поступление энергии от источника в колебательную систему, — клапан (в рассмотренном генераторе роль клапана выполняет транзистор).

4. Устройство, обеспечивающее обратную связь, с помощью которой колебательная система управляет клапаном (в генераторе на транзисторе предусмотрена индуктивная связь катушки контура с катушкой в цепи эмиттер — база).

Примеры других автоколебательных систем. Автоколебания возбуждаются не только в электрических системах, но и в механических. К таким системам относятся обычные часы с маятником или балансиром (колесиком с пружинкой, совершающим крутильные колебания). Источником энергии в часах служит потенциальная энергия поднятой гири или сжатой пружины.

К автоколебательным системам относятся электрический звонок с прерывателем, свисток, органные трубы и многое другое. Наше сердце и легкие также можно рассматривать как автоколебательные системы.

Мы ознакомились с наиболее сложным видом колебаний — автоколебаниями. В автоколебательных системах вырабатываются незатухающие колебания различных частот. Без таких систем не было бы ни современной радиосвязи, ни телевидения, ни ЭВМ.

Вопросы к параграфу

1. Что такое автоколебательная система?

2. В чем отличие автоколебаний от вынужденных и свободных колебаний?

3. Опишите свойства р—n-перехода в полупроводниках.

5. Какова роль транзистора в генерации автоколебаний?

6. Как осуществляется обратная связь в генераторе на транзисторе?

7. Укажите основные элементы автоколебательной системы.

8. Приведите примеры автоколебательных систем, не рассмотренные в тексте.

На этом мы заканчиваем изучение механических и электрических колебаний. Замечательна тождественность общего характера процессов различной природы, тождественность математических уравнений, которые их описывают. Эта тождественность, как мы видели, существенно облегчает изучение колебаний.

Источник

Учебники

Журнал «Квант»

Общие

Автоколебания. Генератор незатухающих колебаний (на транзисторе)

Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Для того чтобы они были незатухающими, нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре. Широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени.

Любая автоколебательная система состоит из следующих четырех частей (рис. 1): 1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан — некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь — управление работой клапана за счет процессов в самой колебательной системе.

Генератор на транзисторе — пример автоколебательной системы. На рисунке 2 приведена упрощенная схема такого генератора, в котором роль «клапана» играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.

При замыкании цепи через транзистор проходит импульс тока, который заряжает конденсатор С колебательного контура, в результате чего в контуре возникают свободные электромагнитные колебания малой амплитуды. Ток, протекающий по контурной катушке L, индуцирует на концах катушки обратной связи переменное напряжение. Под действием этого напряжения электрическое поле эмиттерного перехода периодически то усиливается, то ослабляется, а транзистор то открывается, то запирается. В те промежутки времени, когда транзистор открыт, через него проходят импульсы тока. Если катушка Lсв подключена правильно (положительная обратная связь), то частота импульсов тока совпадает с частотой колебаний, возникших в контуре, и импульсы тока приходят в контур в те моменты, когда конденсатор заряжается (когда верхняя пластина конденсатора заряжена положительно). Поэтому импульсы тока, проходящие через транзистор, подзаряжают конденсатор и пополняют энергию контура, и колебания в контуре не затухают.

Если при положительной обратной связи медленно увеличивать расстояние между катушками Lсв и L, то с помощью осциллографа можно обнаружить, что амплитуда автоколебаний уменьшается, и автоколебания могут прекратиться. Это значит, что при слабой обратной связи энергия, поступающая в контур, меньше энергии, необратимо преобразуемой во внутреннюю. Таким образом, обратная связь должна быть такой, чтобы: 1) напряжение на эмиттерном переходе изменялось синфазно с напряжением на конденсаторе контура — это фазовое условие самовозбуждения генератора; 2) обратная связь обеспечивала бы поступление в контур столько энергии, сколько ее необходимо для компенсации потерь энергии в контуре — это амплитудное условие самовозбуждения.

Частота автоколебаний равна частоте свободных колебаний в контуре и зависит от его параметров.

Уменьшая L и С, можно получить высокочастотные незатухающие колебания, используемые в радиотехнике.

Амплитуда установившихся автоколебаний, как показывает опыт, не зависит от начальных условий и определяется параметрами автоколебательной системы — напряжением источника, расстоянием между Lсв и L, сопротивлением контура.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 394-395.

Источник

Автоколебания. Генератор незатухающих колебаний
план-конспект урока по физике (11 класс) на тему

Виртуальный физический эксперимент

Необходима программа для воспроизведения файлов ОМС

Скачать:

Вложение Размер
Конспект урока 478.21 КБ
Виртуальный осциллограф 245.04 КБ
Генератор высокой частоты 1.39 МБ
Генератор низкой (звуковой) частоты 1.98 МБ
Звуковой генератор 20.71 КБ
рис. Генератор на транзисторе 23.92 КБ
табл.Диапазон звуковых частот 9.18 КБ

Предварительный просмотр:

Автоколебания. Генератор незатухающих колебаний.

Учитель физики: Мамеева-Шварцман Ирина Михайловна

§ 36. Автоколебания. Генератор незатухающих колебаний

4. Электромагнитные колебания

  1. сформировать понятие автоколебаний; рассмотреть принцип действия генератора незатухающих колебаний на транзисторе, генераторов низких и высоких частот;
  2. исследовать зависимость вида осциллограммы колебаний от их частоты и амплитуды;
  3. продолжить формирование знаний по физическим основам получения переменного тока.
  1. развивать практические умения учащихся: умение анализировать, обобщать, выделять главную мысль из рассказа учителя и делать выводы;
  2. развивать умение применять полученные знания в новых условиях.
  1. расширить мировоззрение учащихся об истории исследования по проблемам вынужденных колебаний, вкладе ученых в становление теории автоколебаний;
  2. отрабатывать навыки учебного труда по составлению опорного конспекта (схемы) материала.

изучение и первичное закрепление новых знаний

Эвристическая беседа, составление опорного конспекта (схемы), мини-исследование, фронтальная работа, работа в группах, индивидуальный опрос (рефлексия, тестирование)

— учебник «Физика-11» (Мякишев, Буховцев), рабочие тетради, 2 листа ватмана, маркеры, бланки с тестом и рефлексией;

— компьютер, проектор, экран, виртуальный звуковой генератор, виртуальный осциллограф;

— флеш-рисунки «Генератор на транзисторе», «Диапазоны звуковых частот»

— OMS-модули «Генератор низкой (звуковой) частоты», «Генератор высокой частоты»

Зависимость осциллограммы электромагнитных колебаний звуковой частоты от частоты и амплитуды колебаний

Установление готовности класса к уроку.

Перед ребятами изображения (или реальные предметы) математического маятника и маятниковых часов; гитары и скрипки; воспроизведение звука стука мела о доску и звука от соприкосновения пенопласта со стеклом (или любые другие примеры, демонстрирующие затухающие и незатухающие колебания).

— Ребята, что объединяет все эти примеры. Вспомним, что свободные колебания в реальном колебательном контуре всегда затухающие. Но зачастую просто необходимо сделать их незатухающими. Давайте с вами постараемся найти пути к решению этой проблемы. Что же нужно для того, чтобы во время колебательного процесса энергия не терялась.

— Итак, нам требуется такое устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре для того, чтобы они были незатухающими. Как это можно сделать. (Работа в парах с последующим обсуждением всех предложенных вариантов).

— То есть, существуют такие колебания, которые поддерживаются автоматически – автоколебания. Но их надо как-то получать. Необходимо иметь источник, с помощью которого пополнялась бы энергия колебательной системы. Как называется прибор, который что-то создаёт? Является источником чего-либо. Генератор! Да вы просто генераторы идей!

— Давайте же теперь сформулируем с вами тему нашего сегодняшнего занятия…

— Но прежде чем приступить к изучению генератора автоколебаний, проведём подготовительную «разминку для ума»!

Вопросы учащимся (выбирают вопросы случайным образом из «чёрного ящика»)

1.Какие вещества называют полупроводниками?

3. Из каких основных элементов он состоит?

4. Назовите основные носители базы, эмиттера, коллектора.

5. Действие транзистора. Условное изображение на схеме.

6. Колебания. Виды колебаний.

7.Почему колебания затухают с течением времени?

Изучение нового материала

— Накануне первой мировой войны Россия в научном отношении значительно отставала от передовых капиталистических стран. В частности, в России не было радиотехнической промышленности. Всё оборудование для радиосвязи приходилось ввозить из-за границы, а после революции этот источник был практически закрыт. В этих условиях советские ученые Крылов, Мандельштам, Папалекси, Андронов провели столь глубокие исследования по проблемам вынужденных колебаний, что намного опередили своих западных коллег, так что мировой научный центр по этим проблемам переместился в СССР.

При свободных колебаниях энергия системы уменьшается. В связи с этим стали широко применяться автоколебания — незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени. Частота и амплитуда автоколебаний определяются свойствами самой системы и не зависят от внешнего воздействия. Например, под стальной гирей, висящей на пружине, располагается электромагнит. Если будут попеременно включать и выключать ток, то гиря начнет совершать вынужденные колебания. Попробуйте-ка объяснить, что будет происходить дальше.

— А теперь постарайтесь привести примеры автоколебаний…

  1. незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири;
  2. колебания скрипичной струны под воздействием равномерно движущегося смычка;
  3. колебание воздушного столба в трубе органа, при равномерной подаче воздуха в неё;
  4. вращательные колебания латунной часовой шестерёнки со стальной осью, подвешенной к магниту и закрученной
  5. образование турбулентных потоков на перекатах и порогах рек;
  6. голоса людей, животных и птиц образуются благодаря автоколебаниям, возникающим при прохождении воздуха через голосовые связки.

— Наиболее распространённой механической автоколебательной системой являются маятниковые часы. В 1657 году голландский физик Христиан Гюйгенс предложил использовать изохронность колебаний маятника для создания равномерного движения стрелки на часах. Устройство, предложенное Гюйгенсом, в его главных чертах сохранилось до настоящего времени: маятник, поднятый груз, анкер и ходовое колесо. Обратите внимание, что, в основном, маятник движется свободно, получая за период два толчка. Колебания возникают и поддерживаются самой колебательной системой, то есть являются автоколебаниями. Для многих автоколебательных систем характерны основные элементы: собственно колебательная система, источник энергии, «клапан» (регулирует поступление энергии в колебательную систему).

— Используя метод аналогий, перейдём от механической автоколебательной системы к электромагнитной автоколебательной системе, которая генерирует электромагнитные колебания. Что можно использовать в качестве источника энергии (источник тока), клапана (транзистор), колебательной системы в электрической цепи (автогенератор). Как можно осуществить обратную связь между клапаном и колебательной системой. (работа с учебником)

Принцип работы генератора на транзисторе ( флеш-рисунок «Генератор на транзисторе» )

— В момент подключения источника постоянного тока через коллекторную цепь транзистора проходит ток, заряжающий конденсатор колебательного контура. В контуре возникнут свободные электромагнитные колебания. Так как катушка колебательного контура индуктивно связана с катушкой обратной связи, то ее изменяющееся магнитное поле вызовет в катушке обратной связи переменную ЭДС такой же частоты, как и колебания в контуре. Эта ЭДС, будучи приложена к участку база – эмиттер, вызовет пульсацию тока в цепи коллектора. Так как частота этих пульсаций равна частоте электромагнитных колебаний в контуре, то они подзаряжают конденсатор контура и тем самым поддерживают постоянной амплитуду колебаний в контуре.

Наблюдение изменения формы осциллограммы от частоты и амплитуды колебаний

— Предлагаю вам совершить небольшое исследование электромагнитных колебаний звуковой частоты. Что нам для этого понадобиться. Звуковой генератор и осциллограф! Но не простые, а… виртуальные! Поэтому нужна ещё пара компьютеров для ваших мини-лабораторий.

— Делимся на 2 группы для изучения зависимости формы колебаний от их 1) частоты и 2) амплитуды.

— А так как мы будем работать со звуковым генератором, то напомните мне, пожалуйста, диапазон слышимых звуковых частот. ( флеш-рисунок «Диапазоны звуковых частот» )

1 группа будет работать в акустическом (слышимом) диапазоне звуковых частот.

Для 2 группы ограничений в диапазоне амплитуд нет.

Результаты наблюдений зависимости формы колебаний от их частоты:

Источник

Adblock
detector