Меню

Бесколлекторный авиационный генератор постоянного тока

Бесколлекторные (бесконтактные) авиационные генераторы постоянного тока

Коллекторные генераторы постоянного тока имеют два существенных недостатка, связанных с наличием контактного узла-коллектора:

• повышенную трудоемкость технической эксплуатации;

В связи с этим после создания бесконтактных синхронных генераторов серии ГТ, по аналогии были разработаны бесконтактные генераторы постоянного тока. Такие генераторы конструктивно состоят из низковольтного бесконтактного генератора переменного тока и силового выпрямителя.

Все современные отечественные бесконтактные генераторы постоянного тока выполняются по одинаковой схеме (рис. 9, 10), рассмотрим их устройство на примере бесконтактного генератора ГСР-20БК (рис. 9).

Рис. 9. Внешний вид генератора ГСР-20БК

Рис. 10. Детали и узлы стартер-генератора ГСР-12БК КИС

ГЕНЕРАТОР ГСР-20БК

Маркировка ГСР-20БК обозначает:

Р – расширенный диапазон частоты вращения;

20 – мощность в киловаттах;

Генератор ГСР-20 БК (рис. 9) предназначен для питания бортовых приемников электроэнергии постоянным током стабилизированного напряжения.

На объекте генератор работает с блоком регулирования, защиты и управления БРЗУ-4В, токовым телеметрическим датчиком ТТД-800, датчиком направления тока ДТН-1, блоком защиты и управления БЗУ-6ВМ.

Генератор приводится во вращение от авиадвигателя. Направление вращения генератора – против часовой стрелки, если смотреть со стороны привода. Рабочее положение – горизонтальное.

Генератор ГСР-20 БК – бесколлекторная машина, выполненная на базе бесконтактного синхронного генератора с вращающимися диодами (8).

Продольный разрез конструкции генератора представлен на рис. 11.

Генератор конструктивно состоит из четырех каскадов: подвозбудителя (19); возбудителя (6); основного генератора (10); силового выпрямительного блока (3).

Подвозбудитель представляет собой нерегулируемый однофазный синхронный генератор с возбуждением от постоянных магнитов ПМ. ОЯП – обмотка якоря подвозбудителя расположена на статоре.

Возбудитель– синхронный генератор обращенного исполнения, т.е. индуктор с обмоткой возбуждения возбудителя ОВВ расположен на статоре, а якорь с обмоткой переменного тока ОЯВ – на роторе. Обмотка якоря возбудителя (ОЯВ) через роторное выпрямительное устройство (шесть диодов В4-25 с номинальным током 25 А) подключена к обмотке возбуждения основного генератора ОВГ. Соединение нейтрали ОЯВ со средней точкой ОВГ улучшает работу схемы.

Рис. 11. Конструктивная схема генератора ГСР-20БК:

1 – кронштейн; 2 – крышка; 3 – выпрямительный блок; 4 – элемент чувствительный; 5 – обмотка якоря возбудителя (ОЯВ); 6 – возбудитель; 7 – обмотка возбуждения возбудителя (ОВВ); 8 – вращающиеся диоды; 9 – обмотка возбуждения генератора (ОВГ); 10 – статор основного генератора; 11 – обмотка якоря основного генератора (ОЯГ); 12 – электромагнит; 13 – шток электромагнита; 14 – петля; 15 – шток расцепителя; 16 – упор; 17 – собачка; 18 – пружина; 19 – подвозбудитель; 20 – обмотка якоря подвозбудителя (ОЯП); 21 – ведомая муфта; 22 – ведущая муфта

Основной генератор – синхронная машина c ОВГ на роторе и ОЯГ на статоре. Его особенность заключается в том, что для усиления демпфирования явно полюсный индуктор снаружи покрыт слоем неферромагнитного металла. Якорная обмотка ОЯГ шестифазная, из двух трехфазных обмоток, уложенных в пазах статора со взаимным сдвигом в 30 электрических градусов. Каждая трехфазная ОЯГ через свое мостовое выпрямительное устройство (схема выпрямления Ларионова на диодах В7-200 с номинальным током 200 А) подключена на выходные клеммы генератора. Взаимный сдвиг трехфазных ОЯГ обеспечивает снижение пульсаций выходного (выпрямленного) напряжения.

Расцепительприводится в действие электромагнитом с обмоткой ОР (обмотка расцепителя).

Силовой выпрямительный блок размещен на статоре и служит для выпрямления переменного напряжения основного генератора. Конструкция блока силового выпрямителя генератора ГСР-20БК представлена на рис. 12. Он выполнен конструктивно совместно с задним щитом 10 и расположен непосредственно у входного воздушного патрубка 4.

Блок силового выпрямителя состоит из шести идентичных групп, каждая из которых включает в себя два вентиля 6 типа В-7-200 с номинальным током 200 А, рассчитанных на работу при температуре окружающей среды до 180°С и трех радиаторов 7.

К средним радиаторам подключаются выводы 8 трехфазных обмоток якоря синхронного генератора.

Радиаторы, расположенные со стороны входного воздушного патрубка, объединяются кольцевой медной шиной 5, соединенной с положительной клеммой генератора.

Рис. 12. Конструкция блока силового выпрямителя

Радиаторы, расположенные непосредственно у заднего щита также объединяются кольцевой шиной 11 и связаны с отрицательной клеммой генератора.

Пружинные шайбы 5 обеспечивают необходимое контактное давление в группе вентилей.

Каждая группа вентилей с помощью накладки из изоляционного материала 12 и шпилек 13 прикреплена к специальной кольцевой поддержке 9, отлитой совместно с крестовиной заднего щита.

Со стороны входного воздушного патрубка все группы вентилей объединяются специальной кольцевой поддержкой 14.

Вентили вращающегося трехфазного мостового выпрямителя 7 укреплены попарно на трех специальных радиаторах 8. На рис. 13 показано расположение на радиаторах одной группы вентилей. Каждый радиатор соединен с соответствующей фазой обмотки якоря возбудителя.

Читайте также:  Как меняют генератор у ваз 2105

Радиаторы устанавливаются вдоль оси полого вала 1 и изолиро-ваны от него специальной втулкой из изоляционного материала 6. Между радиаторами расположены изоляционные прокладки 9.

Рис. 13. Конструкция блока вращающихся выпрямителей

Радиаторы с укрепленными вентилями и изоляционными прокладками соединены в единый конструктивный узел с помощью шпилек 2 и изоляционных фланцев 4 и 10. Шпильки 2 одновременно являются выводными клеммами вращающегося выпрямителя, к которым подключаются выводы 3 обмотки возбуждения синхронного генератора.

Фланец 4 (см. рис. 13) имеет центральное вентиляционное отверстие, связанное с распределительной втулкой 1 комбинированной испарительной системы охлаждения (КИС).

В центральную часть изоляционного фланца 10 запрессован стальной сердечник 11, который совместно с болтом 12 и пружиной 13 удерживает гибкий валик 15 в шлицевом соединении с внутренней частью составного полого вала 14. Изоляционный фланец 10 образует между собой и изоляционной втулкой 6 вентиляционные каналы (на рис13 не показаны) для прохождения охлаждающего потока воздуха или жидкости.

Радиаторы 8 имеют развитую поверхность и выполнены таким образом, что образуют продольные вентиляционные каналы, наличие которых обеспечивает интенсивное охлаждение вентилей.

Соединение генератора с блоком регулирования, защиты и управления БРЗУ-4В и другими элементами системы электропитания осуществляется через штепсельный разъем, а генератора с приводом – посредством стяжного хомута.

В генераторе применены шарикоподшипники закрытого исполнения с консистентной смазкой, обеспечивающие работоспособность генератора без дополнительного обслуживания до первого планового ремонта.

Для обеспечения развозбуждения генератора в аварийном режиме, а также сигнализации о включении и выключении генератора от бортовой сети на выводах обмотки якоря основного генератора установлены два чувствительных элемента 4, представляющих собой токовые насыщающиеся трансформаторы.

Для автоматического отсоединения вала генератора от вала привода при разрушении шарикоподшипника генератора в конструкции генератора предусмотрена расцепная муфта. Отказ шарикоподшипника вызывает смещение ротора относительно статора. При зацеплении ротора о статор и последующем закорачивании обмотки якоря основного генератора срабатывает блок БРЗУ-4В и формирует сигнал на включение расцепной муфты.

Расцепная муфта состоит из ведущей 22 и ведомой 21 муфт. В рабочем состоянии с ведущей муфтой. При этом на штоке расцепителя 15 видна кольцевая проточка, окрашенная в желтый цвет.

После поступления на электромагнит 12 электрического сигнала о расцеплении шток электромагнита 13 сталкивает собачку 17 с упора 16 и сектор штока 15 под действием пружины 18 входит в зацепление с упорной резьбой, вращающейся ведомой муфты 21.

Благодаря продолжающемуся вращению ведомой муфты, ее торцевые зубья выходят из зацепления с торцевыми зубьями ведущей муфты 22. Ведущая муфта продолжает вращаться вместе с приводом, а вал генератора останавливается. Включить ведомую муфту можно лишь при неподвижной ведущей муфте. Для этого шток 15 следует вывести в исходное положение до отказа, в котором его снова будет удерживать защелкивающий механизм. Эта операция выполняется вручную путем приложения осевого усилия к штоку через петлю 14.

Рис. 14. Принципиальная электрическая схема ГСР-20БК

Принцип действия ГСР-20БК

Принцип действия рассмотрим по принципиальной электрической схеме, представленной на рис. 14. При вращении генератора под действием магнитного поля постоянных магнитов ПМ в обмотке якоря подвозбудителя (ОЯП) 20 наводится переменная ЭДС. Переменный ток, возникающий в цепи ОЯП, выпрямляется блоком регулирования, защиты и управления и подается в обмотку возбуждения возбудителя (ОВВ) 7.

Под действием магнитного поля, возбужденного током ОВВ, в обмотке якоря возбудителя (ОЯВ) 5 наводится переменная ЭДС. Переменный ток, возникающий в цепи ОЯВ, выпрямляется блоком вращающихся диодов 8 (VD1…VD6) и подается в обмотку возбуждения основного генератора (ОВГ) 9. Под действием магнитного поля индуктора основного генератора в обмотке якоря генератора (ОЯГ) 11 наводится переменная ЭДС. Переменный ток, возникающий в цепи ОЯГ, выпрямляется блоком силовых диодов 3 (VD7…VD18). Когда напряжение генератора достигает 15…17 В, рабочая обмотка подвозбудителя ОЯП отключается, и генератор продолжает работать в режиме самовозбуждения.

Чувствительные элементы (Э1, Э2) 4 служат для выдачи сигнала в блок БРЗУ-4В для обеспечения развозбуждения генератора в аварийном режиме, а также сигнализации о включении и выключении от бортовой сети. Работа генератора с блоком БРЗУ-4В описана в руководстве по технической эксплуатации БРЗУ-4В.

Вывод: генераторы постоянного тока являются основными источниками тока на летательном аппарате, стартеры-генераторы служат для запуска двигателя ВС. В настоящее время коллекторные генераторы постоянного тока заменяются бесколлекторными.

Читайте также:  Схема генератора звуковых эффектов

Источник

Бесколлекторные авиационные генераторы постоянного тока

Рассмотренные выше (коллекторные) генераторы постоянного тока имеют два существенных недостатка, связанных с наличием контактного узла-коллектора:

• повышенную трудоемкость технической эксплуатации;

В связи с этим после создания бесконтактных синхронных генераторов серии ГТ, по аналогии были разработаны бесконтактные генераторы постоянного тока. Такие генераторы конструктивно состоят из низковольтного бесконтактного генератора переменного тока и силового выпрямителя.

Все современные отечественные бесконтактные генераторы постоянного тока выполняются по одинаковой схеме (рис. 9, 10), поэтому далее будет рассмотрен только один из них – генератор ГСР-20БК (рис. 9).

Рис. 9. Внешний вид генератора ГСР-20БК

Рис. 10. Детали и узлы стартер-генератора ГСР-12БК КИС

ГЕНЕРАТОР ГСР-20БК

Маркировка ГСР-20БК обозначает:

Р – расширенный диапазон частоты вращения;

20 – мощность в киловаттах;

Генератор ГСР-20 БК (рис. 9) предназначен для питания бортовых приемников электроэнергии постоянным током стабилизированного напряжения.

На объекте генератор работает с блоком регулирования, защиты и управления БРЗУ-4В, токовым телеметрическим датчиком ТТД-800, датчиком направления тока ДТН-1, блоком защиты и управления БЗУ-6ВМ.

Генератор приводится во вращение от авиадвигателя. Направление вращения генератора – против часовой стрелки, если смотреть со стороны привода. Рабочее положение – горизонтальное.

Генератор ГСР-20 БК – бесколлекторная машина, выполненная на базе бесконтактного синхронного генератора с вращающимися диодами (8).

Продольный разрез конструкции генератора представлен на рис. 11.

Генератор конструктивно состоит из четырех каскадов: подвозбудителя (19); возбудителя (6); основного генератора (10); силового выпрямительного блока (3).

Рис. 11. Конструктивная схема генератора ГСР-20БК:

1 – кронштейн; 2 – крышка; 3 – выпрямительный блок; 4 – элемент чувствительный; 5 – обмотка якоря возбудителя (ОЯВ); 6 – возбудитель; 7 – обмотка возбуждения возбудителя (ОВВ); 8 – вращающиеся диоды; 9 – обмотка возбуждения генератора (ОВГ); 10 – статор основного генератора; 11 – обмотка якоря основного генератора (ОЯГ); 12 – электромагнит; 13 – шток электромагнита; 14 – петля; 15 – шток расцепителя; 16 – упор; 17 – собачка; 18 – пружина; 19 – подвозбудитель; 20 – обмотка якоря подвозбудителя (ОЯП); 21 – ведомая муфта; 22 – ведущая муфта

Подвозбудитель представляет собой нерегулируемый однофазный синхронный генератор с возбуждением от постоянных магнитов ПМ. ОЯП – обмотка якоря подвозбудителя расположена на статоре.

Возбудитель– синхронный генератор обращенного исполнения, т.е. индуктор с обмоткой возбуждения возбудителя ОВВ расположен на статоре, а якорь с обмоткой переменного тока ОЯВ – на роторе. Последняя через роторное выпрямительное устройство (шесть диодов В4-25 с номинальным током 25 А) подключена к обмотке возбуждения основного генератора ОВГ. Соединение нейтрали ОЯВ со средней точкой ОВГ улучшает работу схемы.

Основной генератор – синхронная машина c ОВГ на роторе и ОЯГ на статоре. Его особенность заключается в том, что для усиления демпфирования явно полюсный индуктор снаружи покрыт слоем неферромагнитного металла. Якорная обмотка ОЯГ шестифазная, из двух трехфазных обмоток, уложенных в пазах статора со взаимным сдвигом в 30 электрических градусов. Каждая трехфазная ОЯГ через свое мостовое выпрямительное устройство (схема выпрямления Ларионова на диодах В7-200 с номинальным током 200 А) подключена на выходные клеммы генератора. Взаимный сдвиг трехфазных ОЯГ обеспечивает снижение пульсаций выходного (выпрямленного) напряжения.

Расцепительприводится в действие электромагнитом с обмоткой ОР (обмотка расцепителя).

Силовой выпрямительный блок размещен на статоре и служит для выпрямления переменного напряжения основного генератора. Конструкция блока силового выпрямителя генератора ГСР-20БК представлена на рис. 12. Он выполнен конструктивно совместно с задним щитом 10 и расположен непосредственно у входного воздушного патрубка 4.

Блок силового выпрямителя состоит из шести идентичных групп, каждая из которых включает в себя два вентиля 6 типа В-7-200 с номинальным током 200 А, рассчитанных на работу при температуре окружающей среды до 180°С и трех радиаторов 7.

К средним радиаторам подключаются выводы 8 трехфазных обмоток якоря синхронного генератора.

Радиаторы, расположенные со стороны входного воздушного патрубка, объединяются кольцевой медной шиной 5, соединенной с положительной клеммой генератора.

Радиаторы, расположенные непосредственно у заднего щита также объединяются кольцевой шиной 11 и связаны с отрицательной клеммой генератора.

Пружинные шайбы 5 обеспечивают необходимое контактное давление в группе вентилей.

Каждая группа вентилей с помощью накладки из изоляционного материала 12 и шпилек 13 прикреплена к специальной кольцевой поддержке 9, отлитой совместно с крестовиной заднего щита.

Со стороны входного воздушного патрубка все группы вентилей объединяются специальной кольцевой поддержкой 14.

Рис. 12. Конструкция блока силового выпрямителя

Читайте также:  Генератор тумана с одной мембраной

Вентили вращающегося трехфазного мостового выпрямителя 7 укреплены попарно на трех специальных радиаторах 8. На рис. 13 показано расположение на радиаторах одной группы вентилей. Каждый радиатор соединен с соответствующей фазой обмотки якоря возбудителя.

Радиаторы устанавливаются вдоль оси полого вала 1 и изолиро-ваны от него специальной втулкой из изоляционного материала 6. Между радиаторами расположены изоляционные прокладки 9.

Рис. 13. Конструкция блока вращающихся выпрямителей

Радиаторы с укрепленными вентилями и изоляционными прокладками соединены в единый конструктивный узел с помощью шпилек 2 и изоляционных фланцев 4 и 10. Шпильки 2 одновременно являются выводными клеммами вращающегося выпрямителя, к которым подключаются выводы 3 обмотки возбуждения синхронного генератора.

Фланец 4 (см. рис. 13) имеет центральное вентиляционное отверстие, связанное с распределительной втулкой 1 комбинированной испарительной системы охлаждения (КИС).

В центральную часть изоляционного фланца 10 запрессован стальной сердечник 11, который совместно с болтом 12 и пружиной 13 удерживает гибкий валик 15 в шлицевом соединении с внутренней частью составного полого вала 14. Изоляционный фланец 10 образует между собой и изоляционной втулкой 6 вентиляционные каналы (на рис13 не показаны) для прохождения охлаждающего потока воздуха или жидкости.

Радиаторы 8 имеют развитую поверхность и выполнены таким образом, что образуют продольные вентиляционные каналы, наличие которых обеспечивает интенсивное охлаждение вентилей.

Соединение генератора с блоком регулирования, защиты и управления БРЗУ-4В и другими элементами системы электропитания осуществляется через штепсельный разъем, а генератора с приводом – посредством стяжного хомута.

В генераторе применены шарикоподшипники закрытого исполнения с консистентной смазкой, обеспечивающие работоспособность генератора без дополнительного обслуживания до первого планового ремонта.

Для обеспечения развозбуждения генератора в аварийном режиме, а также сигнализации о включении и выключении генератора от бортовой сети на выводах обмотки якоря основного генератора установлены два чувствительных элемента 4, представляющих собой токовые насыщающиеся трансформаторы.

Для автоматического отсоединения вала генератора от вала привода при разрушении шарикоподшипника генератора в конструкции генератора предусмотрена расцепная муфта. Отказ шарикоподшипника вызывает смещение ротора относительно статора. При зацеплении ротора о статор и последующем закорачивании обмотки якоря основного генератора срабатывает блок БРЗУ-4В и формирует сигнал на включение расцепной муфты.

Расцепная муфта состоит из ведущей 22 и ведомой 21 муфт. В рабочем состоянии с ведущей муфтой. При этом на штоке расцепителя 15 видна кольцевая проточка, окрашенная в желтый цвет.

После поступления на электромагнит 12 электрического сигнала о расцеплении шток электромагнита 13 сталкивает собачку 17 с упора 16 и сектор штока 15 под действием пружины 18 входит в зацепление с упорной резьбой, вращающейся ведомой муфты 21.

Благодаря продолжающемуся вращению ведомой муфты, ее торцевые зубья выходят из зацепления с торцевыми зубьями ведущей муфты 22. Ведущая муфта продолжает вращаться вместе с приводом, а вал генератора останавливается. Включить ведомую муфту можно лишь при неподвижной ведущей муфте. Для этого шток 15 следует вывести в исходное положение до отказа, в котором его снова будет удерживать защелкивающий механизм. Эта операция выполняется вручную путем приложения осевого усилия к штоку через петлю 14.

Рис. 14. Принципиальная электрическая схема ГСР-20БК

Принцип действия

Принцип действия рассмотрим по принципиальной электрической схеме, представленной на рис. 14. При вращении генератора под действием магнитного поля постоянных магнитов ПМ в обмотке якоря подвозбудителя (ОЯП) 20 наводится переменная ЭДС. Переменный ток, возникающий в цепи ОЯП, выпрямляется блоком регулирования, защиты и управления и подается в обмотку возбуждения возбудителя (ОВВ) 7.

Под действием магнитного поля, возбужденного током ОВВ, в обмотке якоря возбудителя (ОЯВ) 5 наводится переменная ЭДС. Переменный ток, возникающий в цепи ОЯВ, выпрямляется блоком вращающихся диодов 8 (VD1…VD6) и подается в обмотку возбуждения основного генератора (ОВГ) 9. Под действием магнитного поля индуктора основного генератора в обмотке якоря генератора (ОЯГ) 11 наводится переменная ЭДС. Переменный ток, возникающий в цепи ОЯГ, выпрямляется блоком силовых диодов 3 (VD7…VD18). Когда напряжение генератора достигает 15…17 В, рабочая обмотка подвозбудителя ОЯП отключается, и генератор продолжает работать в режиме самовозбуждения.

Чувствительные элементы (Э1, Э2) 4 служат для выдачи сигнала в блок БРЗУ-4В для обеспечения развозбуждения генератора в аварийном режиме, а также сигнализации о включении и выключении от бортовой сети. Работа генератора с блоком БРЗУ-4В описана в руководстве по технической эксплуатации БРЗУ-4В.

Вывод: генераторы постоянного тока являются основными источниками тока на летательном аппарате, стартеры-генераторы служат для запуска двигателя ВС. В настоящее время коллекторные генераторы постоянного тока заменяются бесколлекторными.

Источник

Adblock
detector