Меню

Бесщеточный генератор переменного тока устройство

Генератор без щеток принцип работы

Генератор без щеток принцип работы

Генераторы с компаундным возбуждением и компенсирующей ёмкостью

Наиболее простым по технической реализации является бесщёточный генератор с компаундным возбуждением и компенсирующей ёмкостью, подключенной к дополнительной обмотке. Такой генератор представляет собой явнополюсную синхронную машину с обмоткой возбуждения в роторе.

Обмотка возбуждения разбита на две секции, концы каждой из которых замкнуты через диод. Таким образом, индуцированный ток в обмотке возбуждения может протекать только в одном направлении, создавая постоянное магнитное поле.

Статор имеет две обмотки: основную и дополнительную. К основной обмотке подключается нагрузка. К дополнительной обмотке подключается компенсирующий конденсатор. Основная обмотка занимает 2/3 пазов статора, а дополнительная 1/3 пазов.

Работает генератор следующим образом. При начале вращения ротора тока в обмотках нет. Однако магнитопроводы статора и ротора имеют остаточную намагниченность. За счёт последней в обмотках начинает индуцироваться ток. Так как за счёт диодов ток в обмотке ротора может протекать только в одном направлении, магнитопровод ротора начинает намагничиваться. При этом вращающееся магнитное поле, создаваемое ротором, индуцирует в обмотках статора электродвижущую силу. Поскольку дополнительная обмотка статора нагружена на конденсатор, через неё начинает протекать переменный ток. Этот переменный ток создаёт переменное, но не вращающееся магнитное поле статора, которое индуцирует электродвижущую силу в обмотке ротора. Под действием этой электродвижущей силы в обмотке ротора возникает ток, который выпрямляется диодами и ещё сильнее намагничивает ротор. Это в свою очередь вызывает увеличение электродвижущей силы и тока в обмотках статора, что в свою очередь ещё сильнее намагничивает ротор. Процесс возбуждения развивается лавинообразно до входа магнитопроводов статора и ротора в режим насыщения. В основной обмотке статора возникает электродвижущая сила номинальной величины. Генератор готов к подключению нагрузки.

При подключении нагрузки к основной обмотке в ней появляется ток, который создает своё магнитное поле. Если бы возбуждение генератора осталось на прежнем уровне, то напряжение на его выходных зажимах снизилось бы по двум причинам: падение напряжения на внутреннем сопротивлении и смещение магнитного поля относительно оси обмотки статора. Однако обмотки статора расположены таким образом, что их магнитные оси повернуты на 90 градусов. За счёт этого происходит поворот магнитного поля ротора в направлении основной обмотки, что увеличивает ЭДС индукции в ней. Чем больше ток основной обмотки — тем больше поворот магнитного поля ротора. Таким образом происходит стабилизация выходного напряжения генератора. Такой способ регулирования называется компаундным.

Генератор с компаундным возбуждением прост по конструкции, обладает малым весом и стоимостью, что обусловило его широкое применение в переносных бензиноэлектрических агрегатах («бензиновые электростанции»). В то же время этому типу генераторов присущ ряд недостатков, а именно:

  • генератор может быть только однофазным;
  • в случае подключения к генератору нагрузки с нелинейным характером сопротивления (например, нагреватель, включенный через диод) процесс компаундирования нарушается — напряжение на выходе генератора может оказаться сильно завышенным.
  • коэффициент полезного действия генератора относительно невысок, так как существенная часть энергии переменного магнитного поля теряется на перемагничивание магнитопроводов, работающих в режиме близком к насыщению.

Устройство

Самыми распространенными, за счет простоты конструкции и практической надежности, являются бесщеточные синхронные генераторы с компаундной системой возбуждения.

Как любая другая электрическая машина, данный генератор состоит из двух ключевых узлов:

  • вращающийся ротор, с расположенными на нем обмотками возбуждения с выпрямительными диодами;
  • неподвижный статор, с основной обмотки которого снимается напряжение для питания потребительской нагрузки, а дополнительная обмотка с компенсирующим конденсатором предназначена для усиления магнитного потока. Обмотки статора питаются напрямую от ступенчатого стабилизатора напряжения и, как правило, соединены по схеме «звезда».

При пуске генератора, ток в обмотках ротора индуцируется остаточной намагниченностью железа генератора. За счет кремниевых выпрямительных диодов, ток индуцирует постоянное магнитное поле, которое при вращении приводит к возбуждению ЭДС в статорных обмотках. Замкнутая через компенсирующий конденсатор дополнительная обмотка, усиливает начальную намагниченность и запускает процесс лавинообразного возбуждения генератора, продолжающийся до момента насыщения магнитного потока. После этого, к генератору можно подключать потребительские устройства и агрегаты.

Читайте также:  Ремень 2166 8рк генератора 3302 дв камминз

Чтобы подключение нагрузки не приводило к понижению выдаваемого напряжения, применяется компаундное регулирование. Оно осуществляется за счет того, что обмотки статора располагаются таким образом, чтобы оси их магнитных полей были смещены на 90 градусов. При этом, увеличение тока в цепи нагрузки приводит к повороту магнитного поля ротора в сторону основной обмотки и, следовательно, увеличению индуцируемой в ней ЭДС. Выходное напряжение стабилизируется.

Преимущества и недостатки

По сравнению с обычными генераторами бесщёточный имеет ряд преимуществ:

  1. Нет угольной пыли, являющейся причиной электрических пробоев.
  2. Нет необходимости в замене изношенных щеток и проточке коллектора якоря.
  3. Меньшее количество механических конструкций даёт более высокую надежность при минимальных трудозатратах на обслуживание.
  4. На работу бесщёточного синхронного генератора не влияют окружающие климатические условия, его применение экономически целесообразно.
  5. Бесщёточные генераторы просты по конструкции и недороги.

К недостаткам можно отнести то, что данные генераторы могут быть только однофазными и имеют невысокий КПД, что, впрочем, устранимо путем применения системы независимого возбуждения с электронными регуляторами.

Бесщёточный синхронный генератор в настоящее время активно используется в бензиновых электростанциях, в речных и морских судах — везде, где их применение оправдано требованиями повышенной надёжности и долгого срока эксплуатации.

Источник

Щетки – слабое место генератора. Есть бесщеточные варианты, но их мало используют. Почему?

Если автомобильный генератор выходит из строя, то самой распространенной причиной является износ щеточного узла. Однако давным-давно изобретены бесщеточные генераторы – почему же они до сих пор не вытеснили своих якобы менее продвинутых «конкурентов»?

Самая распространенная и массовая на сегодня конструкция автомобильного генератора – с использованием графитовых щеток, подающих напряжение на обмотку ротора (так называемую «катушку возбуждения») через пару вращающихся скользящих контактов в виде медных колец на валу ротора. Подобное решение применяется на большинстве автомобилей за редким исключением, ибо оно отработано и за десятилетия подтвердило свою практичность.

В такой конструкции крайне просто и эффективно реализовано поддержание стабильного напряжения в бортсети автомобиля на любых оборотах двигателя и, соответственно, генератора – электронный блок стабилизации напряжения (который по старинке принято именовать «реле-регулятором») отслеживает уровень напряжения на выходе и уменьшает или увеличивает ток в катушке возбуждения. Как только напряжение проседает, ток увеличивается. Как только оно приближается к верхнему пределу 14,2 вольта – уменьшается. Этот процесс идет быстро и непрерывно, и в результате мы имеем стабильное напряжение и на холостых оборотах, и на высокой скорости.

Щеточный узел – сухой и слабо защищенный от песка и влаги. А все, что открыто и трется без смазки, постепенно изнашивается и отказывает. Именно щеточный узел является наиболее частым источником выходов генератора из строя. Тем более что он обычно еще и неразборно совмещен с электронным блоком стабилизации напряжения («реле-регулятором»).

Однако в последние годы слово «БЕСщеточный» (или его аналог «бесколлекторный») на слуху у «широких народных масс» (с) – оно стало известно даже относительно далеким от техники людям. В самых разных сферах быта активно пропагандируются бесщеточные электромоторы – сегодня на них летают квадрокоптеры, крутятся шуруповерты, косят газоны триммеры и работают прочие механизмы и гаджеты. Даже откровенным гуманитариям уже успешно внушили, что «щетки – это плохо: они изнашиваются, отказывают, греются и вызывают потери тока». Почему же в автомобильном генераторе щеточный узел до сих пор не исчез, тогда как в последнее время от него все чаще отказываются даже в моторчиках дешевых детских игрушек?!

Читайте также:  Генератор дыма viper те

Может быть, потому, что на бесколлекторные (или же бесщеточные – как больше нравится) технологии массово переводятся электромоторы, а мы-то ведем речь про генератор? Нет, дело не в этом. Тут как раз никаких препятствий нет. Электромотор и электрогенератор – чрезвычайно похожие по своей сути электрические машины, вдобавок зачастую обратимые: мотор способен вырабатывать ток, если его вращать принудительно, а генератор может выполнять роль мотора, если на него опять же подать ток извне.

Использовать бесщеточный генератор в автомобиле можно, это давно реализовано и практикуется. Однако выпускаются подобные генераторы весьма ограничено и массовыми почему-то не стали… Почему?

Сделать автомобильный генератор бесщеточным в принципе не так сложно. Для чего, собственно, нужны щетки? Чтобы подать через них питание 12 вольт на катушку возбуждения внутри вращающегося ротора. После чего сегментный ротор с катушкой, на которую подан постоянный ток от аккумулятора, становится многополюсным электромагнитом и порождает возникновение тока в неподвижной обмотке – в статоре.

Убрать скользящий щеточный контакт в автомобильном генераторе возможно за счет особой конструкции ротора. Для этого ротор делают удлиненным, а катушку возбуждения выполняют в виде внешнего кольца и неподвижно закрепляют на статоре. Ведь для работы генератора ротор должен стать магнитом, а как намагничивать ротор – катушкой внутри, или катушкой снаружи – непринципиально…

Первые бесщеточные генераторы с неподвижной катушкой возбуждения встречались на автомобилях и полвека назад, и даже раньше. Как правило, ставили их на коммерческий транспорт (дальнобойные грузовики) и сельскохозяйственные и строительные машины (комбайны, трактора, бульдозеры и т. п.). Первым была важна увеличенная надежность и уменьшенная вероятность отказов на длинных перегонах пути, а вторым – защита от постоянно сопровождающих их при работе абразивной пыли и влаги, способных быстро убивать щеточный узел, проникая в генератор через вентиляционные щели. В принципе, в ограниченных объемах используются они в подобных машинах и по сей день.

Однако, согласитесь: генератор, не боящийся воды и пыли, с увеличенным сроком службы благодаря отказу от трущихся насухую деталей – это весьма недурственно! Причем  неплохо для любого генератора, а не только для установленного на грузовике или комбайне! Почему же технология не распространилась на массовый легковой сегмент? Причин тут несколько.

  • Технология производства бесщеточных генераторов более многоэтапна, и генераторы в конечном итоге существенно дороже.
  • При сопоставимых технологиях производства (без дорогостоящих инноваций) бесщеточный генератор в итоге получается крупнее и тяжелее щеточного с теми же характеристиками.
  • Большинство грузовых и сельскохозяйственных «бесщеточников» имели относительно узкий диапазон рабочих оборотов, на которых они эффективны, и на холостом ходу и просто на пониженных передачах толком не заряжали аккумулятор.
  • Современные «бесщеточники» существенно усложнились, дабы сохранить компактность, одновременно получив возможность выдавать большие токи с малых оборотов и не бояться оборотов высоких. Вдобавок к неподвижной обмотке возбуждения в конструкцию добавились постоянные магниты, позволяющие увеличить токоотдачу на малых оборотах, специальные размагничивающие обмотки, нейтрализующие действие постоянных магнитов на высоких оборотах, многофазные статоры, усложненные диодные мосты.

Все это и ряд других факторов ограничивали и продолжают ограничивать распространение таких генераторов. А после эволюционной оптимизации генераторов со щетками (ставших мощнее, компактнее, линейнее и т. п.) преимущества «бесщеточников» оказались еще менее выраженными. Несмотря на явно изнашивающиеся пары трения медь-графит, реально щеточные генераторы ходят весьма долго и их не принято считать потенциально проблемным узлом автомобиля, требующим инновационных вмешательств.

Впрочем, в ряде случаев бесщеточные генераторы имеют актуальность не только на фурах и тракторах. К примеру, щеточного узла нет на некоторых генераторах ряда дизельных кроссоверов BMW и Mercedes. В их моторах применяются генераторы повышенной мощности (180-190 ампер) с водяным охлаждением, которые прикручиваются своей задней крышкой к крышке водяной рубашки двигателя с соответствующим отверстием, как бы «затыкая его своим задом», и, таким образом, частично омываются антифризом. В конструкции мощных водоохлаждаемых генераторов щетки сильно затрудняют компоновку и обслуживание, поэтому от них иногда отказываются. Также серийно встречаются такие генераторы в некоторых комплектациях серьезных рамных внедорожников типа Nissan Patrol. А уазисты любят внедрять в свои тюнингованные «котлеты» не боящиеся купания в болоте 110-амперные бесщеточные генераторы от автобусов ПАЗ. Ну а алтайский завод тракторного электрооборудования еще с советских времен (и, кажется, по сей день!) производит небольшими тиражами бесщеточный генератор для моделей ВАЗ классического (01-07) и раннего переднеприводного (08-099) семейств.

Читайте также:  Бензиновый генератор eland la5500

Тем не менее в конечном итоге все решает экономика и отчасти инжиниринг. На сегодняшний день в массовом потребительском автопроме надежность простейшего щеточного генератора принята за образец баланса цены, живучести и ремонтопригодности. И отходят от этого канона лишь в относительно редких случаях, когда проектирование технически сложного, продвинутого и достаточно дорогого автомобиля неизбежно требует усложненных и недешевых решений…

Источник

Бесщеточный генератор. Устройство и принцип работы

Бесщеточные генераторы существенно отличаются от генераторов с клювообразной магнитной системой.

В генераторе, показанном на рисунке использован интегральный регулятор напряжения. Статор 8 генератора имеет пазы, в которых расположены катушки обмотки статора, закрепленные там пазовыми клиньями. Катушки фаз соединены между собой последовательно, а фазы – в треугольник или, при пятифазной конструкции, в пятиугольник. Сердечник статора зажат между двумя крышками — задней 2, выполненной из алюминиевого сплава, и передней 1. Передняя крышка выполнена из стали, поскольку она является магнитопроводом (проводит магнитный поток, образованный неподвижной обмоткой возбуждения расположенной на втулке индуктора генератора). Индуктор 10 фланцем прижат к торцу передней крышки 1.

В бесщеточном вентильном генераторе с неподвижной обмоткой возбуждения (индукторный генератор) ротор представляет собой многолучевую стальную звездочку, насаженную на вал. Обмотка возбуждения соосна с ротором и закреплена в стальной крышке. На вал ротора генератора надеты втулка 9, в которую через дополнительный воздушный зазор проходит магнитный поток из втулки индуктора; звездочка пакета 6 ротора с шестью зубцами, набранная из стальных листов; алюминиевый фланец 7, в выступах которого, расположенных между зубцами пакета ротора, за­литы постоянные магниты. Эти магниты кроме повышения мощности генератора обеспечивают надежное его самовозбуждение, т. е. возможность работы генератора при отключенной аккумуляторной батарее.

Подшипниковый щит 12 генератора выполнен из алюминиевого сплава. Задняя крышка 2 стянута с ним шпильками. Выпрямитель­ный блок 4 расположен во внутренней полости задней крышки 2 и закреплен на ней тремя изолированными болтами. Блок регулятора напряжения 5, содержащий интегральный регулятор напряжения и подстроенный резистор, расположен на наружной поверхности задней крышки и закрыт пластмассовым кожухом.

Рис. Бесщеточный генератор:
1 – передняя крышка; 2 – задняя крышка; 3 – кожух; 4 – выпрямительный блок; 5 – блок регулятора напряжения; 6 – пакет ротора; 7 – фланец с посто­янными магнитами; 8 – статор; 9 – втулка ротора; 10 – индуктор; 11– обмотка возбуждения; 12 – подшипниковый щит

Магнитный поток, проходящий из ротора в статор через зубцы звездочки ротора, велик, а в промежутках между зубцами (по воздуху) мал. При вращении ротора напротив катушек обмоток фаз статора последовательно оказываются то зубцы, то впадины рото­ра. Пронизывающий их магнитный поток изменяется по величине, и в катушках появляется переменное напряжение. Для увеличения степени изменения магнитного потока и, следовательно, повышения мощности генератора во впадинах звездочки ротора закреплены постоянные магниты.

Источник

Adblock
detector