Меню

Бестопливный генератор капанадзе граната

Бестопливный генератор Тариэля Капанадзе — невозможное возможно?

Дата публикации: 19 октября 2019

Это изобретение называют невозможным. Но бестопливный генератор Тариэля Капанадзе существует. Автор зарегистрировал более 10 разных конструкций. Нижний предел их выходной мощности — 200 Вт, верхний — 5 кВт. Напряжение — 240 В. Запускается устройство от аккумулятора, а затем работает автономно без источника питания сколько угодно времени.

Тайна и поиск инвесторов

Капанадзе давно разрабатывает в Грузии новые источники энергии. Ему помогает команда из квалифицированных ученых и вспомогательного персонала. Лет 30 назад на грузинском ТВ вышел фильм о создании механического самовращающегося генератора малой мощности.

Широкая известность пришла к автору в 2006-2009 гг. Несколько публикаций в сети и печатных СМИ вызвали немалый интерес: у ролика с демонстрацией инвестору гидромеханического генератора Капанадзе более полумиллиона просмотров.

С помощью турецкой компании Капанадзе запатентовал свои БТГ и не раскрывает технологических секретов аппаратов. Как сообщает группа разработчиков, они демонстрировали технологию представителям власти, церкви, европейским чиновникам, но эффекта пока нет. Есть мнение, что нефтегазовое международное сообщество препятствует развитию подобных технологий.

Что известно о схеме

Сам ученый объясняет, что является последователем Теслы. Предполагается некоторая связь разработок Теслы по беспроводной передаче энергии с концепцией Капанадзе.

В схеме последнего есть источник высокого напряжения, который возбуждается от батареи 9 В. После возбуждения колебаний аппарат питает лампы накаливания в 5 кВт и работает дальше без внешней подпитки.

Конструкция собирается из:

  • катушки;
  • охлаждающего вентилятора;
  • блока мощных транзисторов;
  • искрового разрядника.

В цепи нагрузки транзисторами формируется переменный ток 50 Гц. Для работы схемы генератора Капанадзе нужно наличие заземления. Земля представляет собой источник свободных электронов. Они обеспечивают силу тока в цепочке и мощность в полезной нагрузке.

Есть множество предположений и способов решения по теории работы генератора. Турецкие инженеры заявили, что создали трехфазное устройство 100 кВт, которому для запуска и поддержки нужно всего 2 кВт.

Сотрудничество ученого с турецкой компанией не сложилось. Контракт подписали, но появился другой автор, который заявил, что знает секрет аппарата, и все контакты с грузинским автором прекратились. Позже инвесторы выходили на связь, но уже сам Тариэль не захотел развивать эти отношения.

Сам принцип работы генератора Капанадзе вызывает много дискуссий в ученых кругах. Есть версия, что он действует за счет резонанса. Некоторые думают иначе, ведь резонанс как источник дополнительной энергии не универсален. Он включает прямое и обратное (тормозящее) действие. Чтобы использовать его в качестве источника, необходимо организовать схему, где прямое воздействие больше обратного.

Получаем вывод: резонанс и работа генератора Капанадзе — разные понятия. Устройство работает благодаря увеличению мощности при заданном напряжении за счет увеличения величины тока под воздействием дополнительного заряда из земли. Суть: использование не потенциального поля. Так это или нет — знает лишь автор.

Можно ли сделать генератор самостоятельно

Энтузиасты по всему миру стараются повторить задумку. Посмотрим, можно ли воспроизвести генератор Капанадзе с замозапиткой своими руками. Ответ однозначен — пока нет. Схемы для общего пользования не выложены. А все попытки заканчиваются тем, что устройство прекращает автономную работу через некоторое время после генерации. Но существуют модели, с которыми можно поэкспериментировать.

Читайте также:  Заводим приору без ремня генератора

Основной недостаток самоделок — запитать от них получается светодиод на пару секунд. Здесь важна площадь приемника и емкость конденсатора. С последним еще можно как-то справиться, а вот приемник понадобится размером со стадион для бесперебойной запитки хотя бы дома. Но разработки в этой области продолжаются. Есть надежды, что когда-нибудь в новостях альтернативной энергетики появится сообщение об удачном эксперименте.

  • Новые виды солнечных батарей
  • Новости российской альтернативной энергетики
  • О поддержке возобновляемой энергетики в России
  • Самарская компания займется производством ветряков

Вам нужно войти, чтобы оставить комментарий.

Источник

Бестопливный генератор капанадзе граната

9zip.ru Катушки Теслы Новая схема Капанадзе

Данный материал был прислан на почту без каких-либо комментариев. Автор работы неизвестен. Принцип перекликается с опубликованными ранее в этом разделе, поэтому имеет право на рассмотрение.

Бестопливные генераторы свободной энергии (БТГ) Т. Капанадзе используют один принцип получения прибавочной энергии, который основан на использовании волновых свойств замедляющих систем и явлении усиления электростатики магнитным полем.
Замедляющая система (ЗС) в простейшем варианте представляет собой свитый в спираль провод — спиральный резонатор. Идя по виткам спирали, волна замедляется в осевом направлении. Коэффициент замедления n = длина витка / шаг намотки.
Подобные ЗС используют в лампах бегущей волны для усиления СВЧ сигналов. На относительно низких частотах десятков мегагерц свойства спирального резонатора как ЗС практически не применимы, но существуют более эффективные ЗС. Если катушку намотать в два слоя, её эффективность как ЗС увеличится на порядок. Несколько худшие результаты дает намотка катушки на металлическую трубку, когда экран выполняет роль второго провода.
К примеру, если резонатор намотать в один слой проводом D 1 мм, длиной 10 м на полипропиленовом каркасе D 50 мм, частота четвертьволнового резонанса окажется в районе 7 МГц. Если же под провод положить алюминиевую фольгу и изолятор толщиной 5 мм, частота снизится в несколько раз.
Намотка катушки в два слоя по 5 метров замедлит волну в 5-10 раз. Коэффициент замедления зависит от шага намотки и расстояния между проводами. Еще большего замедления можно добиться, используя ленточные проводники.
В первых генераторах Капанадзе наматывал провод на металлический каркас. Далее использовал многослойную намотку, как более эффективную. Замедляющая система необходима для того, чтобы:

  • Уменьшить рабочие частоты.
  • Усилить энергию.

Принцип усиления энергии рассмотрим на примере лампы бегущей волны (ЛБВ):


Согласно классическому объяснению, усиление СВЧ сигнала происходит за счет того, что электроны отдают свою энергию волне, идущей по спирали. При этом сами электроны ускоряются электрическим полем между катодом и анодом.
Электроны могут быть ускорены не только электрическим полем, но и магнитным. На этом принципе работают бетатроны. Ускорение электронов бетатроном осуществляется в вакуумной камере. В отличие от ЛБВ, где на создание электрического поля расходуется энергия анодного источника питания, магнитное поле может быть создано постоянным магнитом или соленоидом. При этом энергия на ускорение электронов фактически не расходуется.
Провод можно рассматривать как множество вакуумных камер, в которых один атом является катодом, а второй, соседний — анодом. Электроны в проводе могут быть беззатратно ускорены магнитным полем во время пролета от атома к атому. Ускорение электронов равносильно увеличению энергии системы.
Рассмотрим работу такой системы на примере практического устройства.

Читайте также:  Простейшие генераторы звуковых частот

Ниже показан самый простой генератор Т. Капанадзе. Генератор содержит только элементы, необходимые для получения прибавочной энергии. В конструкции нет лишних, скрывающих суть плат и деталей.


Резонатор выполнен из провода в ПВХ изоляции в три слоя. В каждом слое размещается одна полуволна волнового резонанса — полторы волны всего.


Намотка всех слоев осуществляется в одном направлении. В таком варианте пучности напряжений на крайних обмотках окажутся противоположными по потенциалу по отношению к среднему слою. Соблюдается условие двойной замедляющей системы.
Направление токов в крайних слоях совпадает, условно на рисунке от центра к концам слоя. Во внутреннем слое направление противоположное — от концов к центру. Система аналогичная полуволновому резонатору, но имеет больший коэффициент замедления.
Ниже показана схема генератора.
Катушка L2 — трехслойный резонатор. Катушки L3, L4 наматываются по краям встречно. На фотографии они замотаны синей изолентой.
Индуктор L1 выполняется из медной трубки, в которую пропускается изолированный провод с оголенным кончиком. Путем перемещения провода внутри трубки можно регулировать частоту резонанса. Индуктор возбуждается на четверти собственного волнового резонанса. Частота индуктора должна быть настроена таким образом, чтобы в резонатор помещалось целое число полуволн, и в результате образовывалась стоячая волна.


Высоковольтный конденсатор С3 совместно с индуктором L1 и разрядником G1 образуют искровой высокочастотный генератор. Если не принять специальных мер, в генераторе образуются хорошо известные затухающие колебания. Осциллограмма изображена ниже.


На осциллограмме хорошо видны моменты переключения разрядника на пиках максимальной амплитуды напряжения в момент смены направления тока в индукторе. При таком режиме работы генератора прибавка не возникнет.
Необходимо обеспечить режим, при котором ток от конденсатора будет протекать через индуктор только в одном направлении. Колебания в таком случае исключаются. Если включить в цепь заземления низкоомный резистор и подключится к нему осциллографом, можно наблюдать осциллограмму, изображенную на схеме.
При первом срабатывании разрядника в заземлении резко возникнет ток. Проходит несколько затухающих колебаний на частоте собственного резонанса индуктора, и далее ток медленно начнет уменьшаться. В это время разрядник уже закрыт. При следующем открытии разрядника произойдет новый скачок тока через резистор, и так будет продолжаться до тех пор, пока конденсатор полностью не разрядится. Амплитуда скачков при этом не уменьшается, несмотря на снижение напряжения на конденсаторе. Конденсатор разряжается в близком к линейному режиме.

Читайте также:  Расчет сил генератор серла

Такая работа генератора достигается благодаря включению разрядника последовательно с резонатором. Запирание разрядника происходит принудительно с частотой собственного LC резонанса резонатора — сотни килогерц. Запирание происходит за счет отраженной волны.
Конденсатор C3 при этом на частоту переключений не влияет.
Чтобы получить дополнительную энергию за счет ускорения электронов, необходимо создать вокруг резонатора магнитное поле. Данную функцию выполняет низкочастотная часть схемы, которая включает трансформатор 50 Гц 220 Вольт Tr1, встречные катушки L3, L4 и сглаживающий конденсатор С4. Нагрузка обозначена в виде ламп накаливания. Можно подключать любые потребители на напряжение 220 Вольт 50 Гц.
Проходя через встречные катушки, ток создает два встречных магнитных поля. Результирующее поле будет направлено перпендикулярно оси катушки. Именно таким полем электроны и ускоряются. Получив дополнительную энергию, электроны передают её атомам. В результате происходит усиление волновых колебаний.
При этом усиливается только один полупериод волны, а второй полупериод наоборот подавляется. Полярность усиленного полупериода определяется направлением тока во встречных катушках. На выходе резонатора возникают однополярные всплески тока, промодулированные частотой 50 Гц. Эти всплески сглаживаются конденсатором С4 и поступают в нагрузку.
Трансформатор Tr1 определяет напряжение на нагрузке. Ток в нагрузке определяется усилительными свойствами резонатора. Соответственно нагрузка может быть гораздо мощнее трансформатора. Конденсатор С2 замыкает выход трансформатора по высокой частоте.
В данном варианте схемы энергия для питания генератора 50 Гц и высоковольтного генератора снимается с дополнительной обмотки L5. Капанадзе использует несколько другой вариант, при котором трансформатор Tr1 имеет дополнительную обмотку на 220 Вольт. В таком варианте эта обмотка просто подключается к выходу устройства. Такой подход несколько упрощает схему, но усложняет трансформатор. Трансформаторы с двумя обмотками на 220 Вольт и двойной низковольтной обмоткой достаточно дефицитные. В некоторых устройствах Капанадзе использует для своих целей трехфазные трансформаторы с обмотками на трех кернах. В таком случае одна обмотка не задействована.

Рекомендации:
При сборке генератора особое внимание нужно обратить на используемые конденсаторы, которые обязательно должны быть качественными.
Источник высокого напряжения может быть собран по любой удобной схеме, например, классической на ТДКС.
Генератор 50 Гц может быть собран по любой удобной схеме или взят готовый преобразователь 12-220 с сетевым трансформатором и чистым синусом на выходе.
При настройке генератора необходимо сначала добиться появления статики, и только потом задействовать низкочастотную часть схемы.
Не существует никаких обязательных условий по намотке резонатора. Его можно мотать проводом в ПВХ изоляции любого диаметра. Длина провода не регламентируется, но не следует использовать намотку менее 15 метров из-за слишком высокой частоты волнового резонанса.

Предупреждения:
Высокое напряжение опасно для жизни. Соблюдайте меры предосторожности. Конструкция обязательно должна быть заземлена, нагрузка подключена.
После настройки генератора, катушки необходимо поместить в стальной экран, чтобы уменьшить излучение. Не держите генератор в жилом помещении.

Источник

Adblock
detector