Меню

Блокинг генератор автоколебательный режим

Блокинг генератор принцип работы

Блокинг-генератор: виды, принцип работы

Блокинг-генератор – это релаксационный генератор импульсов, выполняется он на базе усилительного элемента (например, транзистора) с сильной трансформаторной обратной связью. Чаще всего используют положительную обратную связь.

Принцип работы

Работа схемы разделяется на несколько этапов.

Этап первый: происходит отпирание транзистора при поступлении импульса на эмиттер. Прибор начинает работать.

Когда на базу транзистора поступает отпирающий ток, он вызывает накопление заряда, а также возрастание коллекторного тока.

Через резистор положительная обратная связь, осуществляемая обмотками импульсного трансформатора, возбуждает лавинообразный процесс нарастания базового, коллекторного токов и тока нагрузки.

При этом уменьшается разность потенциалов между эмиттером и коллектором транзистора, когда она достигнет нуля, прибор переходит в состояние насыщения.

Этап второй: пренебрегая сопротивлением первичной обмотки, считаем, что на обмотку подано постоянное напряжение питания.

В результате на остальных обмотках трансформатора напряжение также неизменно.

Характер изменения токов схемы определяется свойством цепей, которые включены последовательно с вторичными обмотками, а также со свойствами сердечника трансформатора. Например, при активной нагрузке ток будет постоянным.

Ток на базе транзистора постоянный, но начинает уменьшаться при заряде конденсатора.

Коллекторный ток определяется суммой тока намагничивания и переходных токов обмоток.

Ток намагничивания возрастает, характер роста определяется петлей гистерезиса материала сердечника.

Вследствие этого увеличивается и ток коллектора.

Это приводит к тому, что транзистор выходит из состояния насыщения, сформирована вершина импульса.

Коллекторный ток снова становится зависимым от величины базового заряда, а базовый ток при этом начинает лавинообразно уменьшаться.

Транзистор запирается, формируется срез импульса.

При запирании прибора блокинг-генератор начинает восстанавливаться в исходное состояние.

Принцип работы блокинг-генератора

Блокинг-генератор и его схема

По форме они могут быть синусоидальными либо прямоугольными.

Дополнительно некоторые устройства получают гармонические сигналы.

По частотности блокинг-генераторы довольно сильно различаются.

Параметр проводимости сигнала зависит от типа выпрямителя.

Устройство на полевом транзисторе РР20

Блокинг-генератор на полевом транзисторе на сегодняшний день считается довольно востребованным.

Используются такие модели чаще всего в радиоприемниках.

Однако для измерительных приборов они также подходят.

В данном случае параметр пороговой частоты в среднем находится в районе 80 Гц. Конденсаторы в таких моделях часто устанавливаются проходного типа.

Однако асинхронные модификации также встречаются.

Работают указанные блокинг-генераторы исключительно с сигналами синусоидального типа.

В данном случае выпрямители устанавливаются самые разнообразные.

Изменение фазовой частоты в таких устройствах осуществляется за счет изменения напряжения в преобразователях.

Проводимость сигнала прибора зависит от мощности выпрямителя.

Источник

Блокинг-генератор, работающий в автоколебательном режиме

Расчет параметров схем, расчетные формулы блокинг-генератора, работающего в автоколебательном режиме. Сопротивление нагрузки, амплитуда выходных импульсов, скважность. Выбор и обоснование элементной базы (для принципиальной электрической схемы).

Министерство образования и наука Российской Федерации

Федеральное агентство по образованию

Поволжский Государственный Технологический Университет

к курсовой работе по дисциплине

«Электроника и Электротехника»

Блокинг-генератор, работающий в автоколебательном режиме

В данной пояснительной записке представлены схемы, расчетные формулы блокинг-генератора, работающем в автоколебательном режиме. В соответствии с заданием рассчитаны необходимые параметры схемы.

Рассчитать схему блокинг-генератора, работающего в автоколебательном режиме, со следующими параметрами:

— сопротивление нагрузки RН = 5 кОм;

— амплитуда выходных импульсов Uвых = +20 В;

— длительность импульсов u = 1 мкс;

Техническое задание

  • Введение
  • 1. Описание схемы устройства блокинг-генератора
  • 2. Расчет схемы блокинг-генератора
  • 2.1 Электрический расчет
  • 2.2Выбор и обоснование элементной базы
  • Заключение
  • Список литературы
  • Приложения
  • Электронная вычислительная техника — сравнительно молодое научно-техническое направление, но она оказывает самое революционизирующее воздействие на все области науки и техники, на все стороны жизни общества. Характерно постоянное развитие элементной базы ЭВМ, которая в настоящее время получила название схемотехники ЭВМ. Элементная база развивается очень быстро; появляются новые типы логических схем, модифицируются существующие. Существует множество различных логических ИС: логические элементы, регистры, сумматоры, АЛУ, дешифраторы, мультиплексоры, счетчики, делители частоты, триггеры, генераторы и усилители постоянного тока. Именно о них пойдет речь в данной работе.

    Читайте также:  Диоды для жигулевского генератора

    1. Описание схемы устройства блокинг-генератора

    Блокинг-генератор — это автоколебательная система, генерирующая кратковременные импульсы большой скважности. Схема блокинг-генератора представляет собой однокаскадный усилитель с глубокой обратной связью. Для обеспечения обратной связи используются импульсные трансформаторы.

    Благодаря такой связи и высоким ключевым качествам транзистора блокинг-генератор, построенный даже на маломощном транзисторе, может генерировать мощные импульсы.

    Импульсы блокинг-генератора обладают весьма короткими фронтами и могут иметь длительность от долей микросекунды до долей миллисекунды. Блокинг-генератор позволяет осуществлять трансформаторную связь с нагрузкой, что во многих случаях очень важно.

    Рис.1. Принципиальная схема блокинг-генератора.

    В цепь коллектора включена обмотка трансформатора, осуществляющая обратную связь с цепью базы транзистора путем включения в эту цепь обмотки.

    Кроме того в цепь базы включены конденсатор С и резистор смещения R1, величины которых определяют длительность рабочего импульса tu и период автоколебаний Т.

    Нагрузка Rн включена с помощью специальной обмотки трансформатора. На базу транзистора подано отпирающее напряжение.

    генератор автоколебательный режим электрический

    2. Расчет схемы блокинг-генератора

    Выбираем тип транзистора, исходя из условий быстродействия и надежности.

    а) Для обеспечения малых длительностей фронта и спада выходного импульса необходимо, чтобы:

    При выполнении этого условия величины получаются порядка нескольких .

    б) Допустимое напряжение на коллекторе транзистора Uкб. доп должно удовлетворять соотношению Uкб. доп ? (Eк + ? Uкm) (1 + nб). Обычно значение nб лежит в пределах 0,1 — 0,7.

    Так как выброс сильно искажает форму выходного сигнала блокинг-генератора, то амплитуда выброса, как правило, не должна превышать 10-30% от амплитуды коллекторного напряжения:

    Напряжение питания выбираем, исходя из равенства Eк = (1,1 1,2) Uк = (1,1 1,2) Uвых / nи = 25 В.

    б) Протекание обратного тока закрытого транзистора через резистор R не должно создавать заметного падения напряжения, т.е. R > IКБ0maxR и положив ?Uкт | Eк |.

    2.2 Выбор и обоснование элементной базы

    На основании приведенного выше расчета выбираем элементы (для схемы электрической принципиальной):

    В качестве транзистора VТ1 был взят высокочастотный биполярный транзистор КТ803A, со следующими характеристиками:

    · Граничная частота коэффициента передачи тока: 10 МГц;

    · Статический коэффициент передачи тока: 10-70;

    · Начальный ток коллектора не более: 5 мА;

    · Максимально допустимое напряжение коллектор-эмиттер: 80 В;

    · Максимально допустимый постоянный ток коллектора: 10 А;

    · Максимально допустима рассеивающая мощность коллектора: 60 Вт.

    В соответствии с рассчитанной емкостью схемы, подбираем следующий конденсатор:

    удовлетворяющий нашим требованиям и расчетам.

    В соответствии с рассчитанными номиналами резисторов имеем:

    В соответствии с рассчитанным номиналом резистора нагрузки, в качестве диода VD1 выбираем диод:

    В ходе выполнения данной курсовой работы была рассчитана схема блокинг-генератора, работающего в автоколебательном режиме, с заданными характеристиками:

    — сопротивление нагрузки RН = 5 кОм;

    — амплитуда выходных импульсов Uвых = +20 В;

    — длительность импульсов u = 1 мкс;

    Были рассчитаны и проверены параметры данной схемы.

    1. Расчет импульсных устройств на полупроводниковых приборах.

    2. Под редакцией Агаханяна Т.М.: М, 1973.

    3. Воронков Э.Н. Овечкин Ю.А. Основы проектирования усилительных и импульсных схем на транзисторах 1973.

    4. Расчет электронных схем под редакцией Изъюровой Г.И.

    5. Справочник конструктора радиоэлектронной аппаратуры.

    6. Справочник полупроводниковые приборы транзисторы малой мощности. Под редакцией А.В. Голомедова. М: 1989

    Подобные документы

    Разработка и расчет принципиальной схемы ждущего блокинг-генератора, его использование в качестве формирователя импульсов, основные достоинства. Моделирование конструкции на ЭВМ с целью проверки принятых решений и уточнения полученных результатов.

    курсовая работа [402,0 K], добавлен 27.08.2010

    Однокаскадный усилитель, охваченный глубокой обратной связью с помощью трансформатора, для усиления, преобразования и формирования коротких импульсов с крутыми фронтами. Принцип работы блокинг-генератора. Требования к триггерам на дискретных элементах.

    контрольная работа [17,9 K], добавлен 23.07.2013

    Тип схемы передатчика. Расчет параметров структурной схемы. Расчет генератора СВЧ, импульсного модулятора и блокинг-генератора. Мощность на выходе передатчика. Напряжение на аноде модуляторной лампы во время паузы. Прямое затухание ферритового вентиля.

    курсовая работа [212,7 K], добавлен 14.01.2011

    Описание структурной схемы генератора. Описание работы схемы электрической принципиальной блока. Выбор и обоснование элементной базы. Разработка конструкции печатной платы. Разработка конструкции датчика сетки частот. Описание конструкции генератора.

    дипломная работа [287,2 K], добавлен 31.01.2012

    Расчет количества информации в битах на степень свободы сигнала при равномерном законе распределения плотности. Построение электрической принципиальной схемы генератора с внешним возбуждением. Амплитуда коллекторного напряжения и цепь выходного каскада.

    контрольная работа [46,6 K], добавлен 14.01.2011

    Построение генератора прямоугольных импульсов с видом характеристики типа «меандр». Амплитуда сигнала стандартная для транзисторно-транзисторной логики. Функциональная схема устройства: описание ее работы, выбор элементов и расчет их параметров.

    курсовая работа [72,8 K], добавлен 12.07.2009

    Мультивибратор с ёмкостными коллекторно-базовыми связями (релаксационный генератор колебаний). Ждущий, быстродействующий вибраторы, блокинг-генераторы. Автоколебательный, ждущий режим работы. Пуск в ход двигателей постоянного тока, регулирование частоты.

    лекция [329,3 K], добавлен 20.01.2010

    электрическая принципиальная схема таймера повышенной точности на диапазон временных интервалов с использованием внутреннего кварцованного генератора (калибратора) для работы в режиме генератора прямоугольных импульсов. Параметры схемы и ее точность.

    курсовая работа [40,2 K], добавлен 24.06.2008

    Разработка электрической принципиальной и функциональной схемы генератора. Обоснование выбора схем блока вычитания и преобразователя кодов. Функциональная схема генератора последовательности двоичных слов. Расчет конденсаторов развязки в цепи питания.

    курсовая работа [1,7 M], добавлен 14.09.2011

    Схемы трехфазных выпрямителей, анализ их достоинств и недостатков. Выбор оптимальной конструкции трехфазного выпрямителя, работающего на активно-индуктивную нагрузку, расчет его основных параметров, выбор элементной базы, конструкторская сборка прибора.

    курсовая работа [907,0 K], добавлен 04.12.2013

    Источник

    Блокинг генератор: принцип работы

    Блокинг-генератор применяется в электротехнике и электронике для возникновения внушительных, но коротких во времени сигналов-импульсов с резким фронтом и существенным отношением периода повторения импульсов к их длительности (скважность). В настоящем применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

    Принцип работы

    По своей сути, блокинг генератор является усилителем (генератором), собранным на базе транзисторов, расположенных в один каскад. Область применения узка: источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников.

    Усилитель, используемый для изготовления блокинг-генератора, находится в открытом положении исключительно в период формирования сигнала-импульса. На всё остальное время – закрывается. Отсюда следует, что при большой величине отношения периода повторения импульсов к их длительности усилительный элемент находится в открытом положении существенно меньшее количество времени, чем в закрытом. У усилителя существует тепловой режим. В данном случае он напрямую связан со средней мощностью, отдающейся коллектором. За счёт высокой величины скважности при работе устройства получают существенную мощность в течение сигнала малой мощности.

    Существенная величина скважности блокинг-генератора позволяет ему работать в экономичном режиме, т.к. энергия требуется усилителю только во время открытого положения (время формирования сигнала). Основные режимы работы: автоколебательный и ждущий. Рассмотрим их подробнее.

    Автоколебательный режим

    Чаще всего блокинг-генератор собирается на усилительных элементах – транзисторах, включаемых по двум основным схемам:

    • с общим эмиттером;
    • с общей базой.

    Первая встречается чаще, т.к., имея меньшую длительность фронта, есть возможность сгенерировать предпочтительную форму сигналов. Вторая схема менее подвержена колебаниям характеристик усилителей.

    Рабочий процесс рассматриваемого устройства делится на 2 стадии:

    • закрытое положение транзистора, занимает основное время периода колебаний;
    • транзистор в открытом положении, сигнал-импульс проходит стадию формирования.

    У конденсатора С1 происходит заряд током источника в течение образования импульса. За счёт этого С1 обеспечивает закрытое положение усилительного элемента. Во время данной стадии у конденсатора С1 происходит неспешная разрядка через существенное сопротивление резистора R1. При этом на базе диода VT1 создается около нулевой потенциал, что не позволяет ему открыться.

    При достижении порога напряжения открытия у усилительного элемента происходит процесс открывания, и сквозь обмотку I, называющуюся коллекторной, трансформатора Т потечёт ток. В этот момент в основной или базовой обмотке II происходит индукция потенциала. Полярность должна быть такова, чтобы образующееся на базе транзистора напряжение имело положительную полярность. В случае ошибочного подключения обмоток трансформатора устройство генерировать сигналы не будет. В этом случае требуется переподключить концы одной из обмоток. Блокинг-генератор заработает.

    Важно! Обвальное развитие процесса открытия транзистора имеет название прямого блокинг-процесса.

    В I обмотке трансформатора появляется положительное напряжение, что ведёт к возрастанию различных токов и, следовательно, продолжению снижения напряжения коллектора и базы усилителя. Совершается резкое нарастание коллекторного тока и напряжения на усилительном элементе. В следующий момент напряжение падает почти до нуля, и устройство переходит в режим насыщения.

    Важно! Обвальное развитие процесса закрытия транзистора имеет название обратного блокинг-процесса.

    Открытие усилителя происходит практически мгновенно, поэтому в течение всего этого времени потенциал конденсатора С1 и величина энергии в трансформаторе практически не претерпевают изменений. Фронт импульса сформирован. Происходит образование вершины импульса, конденсатор С1 начинает заряжаться.

    Выход усилительного элемента из режима насыщения означает, что ток у коллектора опять начинает зависеть от количества накопленного в базе транзистора заряда, а базовый ток уменьшается. Усилительные свойства транзистора начинают восстановление. В этот момент в первичной обмотке трансформатора формируется отрицательное относительно транзистора напряжение. Данный процесс ведёт к продолжению уменьшения коллекторного тока. Происходит формирование среза импульса.

    Усилительный элемент находится в закрытом положении. Происходит переход в исходное состояние. Физическая суть сводится к рассеянию энергии, появившейся за период появления сигнала-импульса в различных реактивных частях схемы. Так как здесь разность потенциалов на конденсаторе и величина энергии в трансформаторе не изменились, то закрытие транзистора провоцирует рост напряжения на коллекторе. В этот момент у блокинг-генератора происходит выброс напряжения. В некоторых случаях появляются паразитные колебания.

    Ти » (3 – 5) R1С1 – таким выражением характеризуется автоколебательный режим.

    Ждущий режим

    При ждущем режиме работы рассматриваемого устройства генерация сигналов происходит только с помощью внешнего воздействия – на вход необходимо подать произвольные запускающие импульсы.

    В начальном состоянии усилительный элемент закрывается отрицательным смещением на базе, и лавинообразное развитие процесса открытия транзистора начнется исключительно только после подачи противоположного по знаку импульса соответствующей амплитуды на базу.

    Появление импульса происходит по полной аналогии автоколебательного режима, рассмотренного выше. Конденсатор С1 разряжается до изначального напряжения базы. Далее транзистор остается в закрытом состоянии до появления последующего запускающего импульса. Длительность сигналов, а также их форма, исходящих от рассматриваемого устройства, находятся в полной зависимости от параметров собранной схемы.

    Чтобы цепь запуска не оказывала никакого воздействия на работу находящего в ждущем режиме блокинг-генератора, в представленной схеме присутствует специальный разделительный диод VD2. Его задачей является закрытие сразу за окончанием процесса открывания транзистора. Это действие обрывает связь между внешним источником и интересующим нас устройством. Допускается добавлять в расчёт представленной схемы эмиттерный повторитель.

    Таким образом, подытоживаем принцип работы блокинг генератора на полевом транзисторе: если при исчезновении напряжения на базе транзистора условия, требуемые для повторения цикла без внешнего воздействия, не исполняются, то этот режим работы называется ждущим. Если же при исчезновении напряжения там же начинается новый цикл по образованию нового импульса без привлечения внешнего источника, то режим работы схемы автоколебательный.

    Видео

    Источник

    Adblock
    detector