Меню

Что такое перевозбуждение генератора

Курс лекций по разделу 2 Применение основного оборудования электрических станций, сетей и систем

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Рис. 4-85. Зависимость cos φ от нагрузки при различных возбуждениях.

Двигатели обычно рассчитываются для работы при номинальной нагрузке с cos φ = 0.9, соответствующим опережающему току. В этом случае машина будет служить не только в качестве двигателя, но и для улучшения cos φ всей электрической установки.

Применение нормальных синхронных двигателей только для улучшения cos φ (для работы в режиме компенсатора) в обычных случаях нецелесообразно, так как при такой работе и при допустимом (номинальном) токе возбуждения ток статора получается меньше номинального и, следовательно, машина не полностью используется.

Синхронные двигатели обычно выполняются с возбудителем, посаженным на один с ними вал. Поэтому при малых мощностях они менее выгодны, чем асинхронные двигатели. Но, начиная со 100 кВт, а при низких частотах вращения и с меньшей мощности, синхронные двигатели в ряде случаев следует предпочесть асинхронным двигателям. Применение в системах возбуждения полупроводниковых выпрямителей вместо машинных возбудителей позволяет получить достаточно экономичные синхронные двигатели и при сравнительно небольших мощностях.

Основное преимущества синхронного двигателя, как уже отмечалось, его высокий cosφ. Это преимущество приводит не только к повышению использования всей электрической установки, но и к уменьшению размеров синхронного двигателя по сравнению с асинхронным (при прочих равных условиях). Последнее объясняется тем, что размеры электрической машины определяются ее кажущейся мощностью, a не активной. Кажущаяся мощность синхронного двигателя при созφ = 1 меньше, чем асинхронного, в отношении 1 : cos φ. Это особенно заметно при сравнении тихоходных двигателей, так как cos φ а тихоходного асинхронного двигателя имеет относительно небольшое значение.

Из других важных преимуществ синхронного двигателя отметим здесь возможность получить большой максимальный момент М эм.м за счет увеличения воздушного зазора, так как при этом уменьшается синхронное сопротивление x d . Увеличение максимального вращающего момента асинхронного двигателя за счет увеличения воздушного зазора привело бы к значительному ухудшению его cos φ. К тому же максимальный вращающий момент синхронного двигателя зависит от напряжения в первой степени, тогда как тот же момент асинхронного двигателя пропорционален квадрату напряжения.

Как указывалось, синхронный компенсатор представляет собой синхронный двигатель, работающий без нагрузки на валу и предназначенный для компенсации сдвига фаз тока и напряжения или для регулирования напряжения в конце и в промежуточных точках линии электропередачи. Последнее достигается путем регулирования тока возбуждения синхронного компенсатора, что приводит к изменению реактивной составляющей тока линии электропередачи. Обычно синхронный компенсатор работает с перевозбуждением, потребляя из сети опережающий ток, как конденсатор. Поэтому его иногда называют синхронным конденсатором.

Пуск в ход синхронного компенсатора осуществляется при помощи разгонного двигателя, причем включение его в сеть на подстанциях Советского Союза довольно часто производится по методу самосинхронизации. В последние годы широко применяется также асинхронный пуск в ход при пониженном напряжении.

Заводами Советского Союза изготавливаются синхронные компенсаторы мощностью от 1000 до 75000 кВА.

Их номинальная мощность соответствует режиму работы с опережающим напряжение током (практически на 90°). Ток возбуждения при этом режиме работы является номинальным током возбуждения. Для его уменьшения синхронные компенсаторы обычно выполняются с меньшим воздушным зазором, чем синхронные двигатели. Вследствие этого их синхронное сопротивление по продольной оси x d * [д. е.] нередко достигает значений 2 2,2.

4-9. Распределение активной и реактивной мощностей между параллельно работающими машинами

На основании изложенного в предыдущих параграфах можно сделать следующие выводы, касающиеся распределения активных и реактивных мощностей при параллельной работе синхронных машин в генераторном и двигательном режимах.

Общая нагрузка параллельно работающих синхронных генераторов вполне определяется двумя векторами: вектором напряжения и вектором тока . Если даны эти два вектора, то мы можем найти активную и реактивную мощности, составляющие нагрузку.

Распределение активной мощности между параллельно работающими синхронными генераторами производится путем воздействия на регуляторы частоты вращения их первичных двигателей. Воздействие на регуляторы скорости вызывает изменение количества пара, воды или горючего, поступающего в первичный двигатель. При этом будет изменяться вращающий момент, развиваемый первичным двигателем, а следовательно, и угол θ между векторами и , что, как известно, вызывает изменение активной мощности синхронной машины.

На электрических станциях применяются автоматические регуляторы частоты вращения первичных двигателей. Для того чтобы распределение нагрузки между параллельно работающими генераторами соответствовало их номинальным мощностям, нужно правильно подобрать характеристики [ п = f ( P )] автоматических регуляторов.

Распределение реактивной мощности между параллельно работающими синхронными машинами производится путем воздействия на возбуждение этих машин.

Синхронный генератор при перевозбуждении отдает в сеть отстающий реактивный ток, а при недовозбуждении отдает опережающий реактивный ток. В генераторе фаза тока определяется относительно напряжения, действующего на зажимах обмотки статора.

Читайте также:  Генератор для мотоблока патриот

Синхронный двигатель при перевозбуждении потребляет опережающий реактивный ток, а при недовозбуждении потребляет отстающий реактивный ток. Здесь фаза тока определяется относительно напряжения сети, которое принимается направленным прямо противоположно напряжению на зажимах машины в режиме генератора. Так как потребление отстающего реактивного тока эквивалентно отдаче в сеть опережающего тока и наоборот, то можно считать, что перевозбужденная синхронная машина независимо от того, работает ли она генератором или двигателем, отдает в сеть отстающую реактивную мощность, а недовозбужденная синхронная машина — генератор или двигатель — потребляет из сети отстающую реактивную мощность. Перевозбужденная синхронная машина может поэтому рассматриваться как емкость, а недовозбужденная синхронная машина — как индуктивность, включенная в сеть.

Понятия «перевозбуждение» и «недовозбуждение» синхронных машин вполне определяют их работу в отношении фазы реактивного тока.

На современных электрических станциях синхронные машины снабжаются автоматическими быстродействующими регуляторами напряжения, которые в то же время обусловливают автоматическое

4-12. Качания синхронной машины

Как было установлено, при всяком изменении нагрузки изменяется угол и между векторами напряжения и э.д.с. , так как каждой нагрузке соответствует свой угол . Если машины работают параллельно, то при переходе любой из машин от одной нагрузки к другой угол в обычно устанавливается не сразу, а после нескольких колебаний около конечного своего значения.

Допустим, что генератор работает с сетью очень большой мощности и что момент, приложенный к его валу со стороны первичного двигателя, резко возрос от значения М 1 , до значения М 2 и в дальнейшем остался неизменным. Угловая частота вращения ротора ω, а следовательно, и угол θ начнут при этом возрастать. При изменении ω и θ возникнут момент сил инерции и синхронизирующий момент, которые, как будет показано, действуют в противоположные стороны. Вследствие этого процесс изменения угла θ от установившегося значения θ 1 , соответствующего моменту М 1, до установившегося значения θ 2 , соответствующего моменту М 2 , носит колебательный характер, причем обычно колебания быстро затухают ( рис 4-90 ).

Рис. 4-90. Колебания угла θ и частоты ω при резком изменении нагрузки синхронной машины.

Частоту вращения машины ω мы можем представить как сумму двух частот вращения — постоянной синхронной ω с и переменной ω t : ω = ω с + ω t .

Рассмотренные колебания называются собственными или свободными Следовательно, синхронная машина вместе с другими машинами, работающими с ней параллельно, представляет собой систему, способную к собственным колебаниям, что является наряду с указанными ранее характерным свойством синхронной машины.

Помимо собственных колебаний синхронная машина может испытывать также вынужденные колебания, если внешний момент, приложенный к ее валу, периодически изменяется. Такие условия для синхронного генератора получаются, если первичным двигателем служит поршневая машина (паровая машина или двигатель внутреннего сгорания). Для синхронного двигателя те же условия возникают при нагрузке его, например, на поршневой насос или компрессор.

Периодически изменяющийся момент на валу синхронной машины нарушает нормальные условия ее работы, а в некоторых случаях может сделать эту работу невозможной.

В последующем мы будем рассматривать качания синхронной машины применительно к синхронному генератору, однако полученные при этом выводы могут быть отнесены в равной мере и к качаниям синхронного двигателя.

а) Вращающие моменты, действующие на ротор синхронной машины при ее качаниях.

Вначале рассмотрим параллельную работу синхронного генератора с сетью бесконечно большой мощности при периодически изменяющемся моменте на его валу.

Предположим, что генератор приводится во вращение каким-нибудь поршневым двигателем, например одноцилиндровым четырехтактным дизелем. Кривая зависимости вращающего момента такого двигателя от угла поворота в геометрических (механических) градусах показана на рис 4-91 .

Источник

Возбуждение синхронных генераторов

Обмотки роторов синхронных генераторов получают питание от специальных источников постоянного тока, называемых возбудителями.

Мощность возбудителей составляет 0,3-1% мощности генератора, а номинальное напряжение — от 100 до 650 В. Чем мощнее генератор, тем обычно больше номинальное напряжение возбуждения.

Современные схемы возбуждения кроме возбудителя содержат большое количество вспомогательного оборудования. Совокупность возбудителя, вспомогательных и регулирующих устройств принято называть системой возбуждения.

Электрическое соединение возбудителя с обмоткой ротора генератора выполняется преимущественно при помощи контактных колец и щеток. Созданы и применяются бесщеточные системы возбуждения.

Системы возбуждения должны быть надежными и экономичными, допускать регулирование тока возбуждения в необходимых пределах, быть достаточно быстродействующими, а также обеспечивать потолочное возбуждение при возникновении аварии в сети.

Регулируя ток возбуждения, изменяют напряжение синхронного генератора и отдаваемую им в сеть реактивную мощность. Регулирование возбуждения генератора позволяет повысить устойчивость параллельной работы.

При глубоких снижениях напряжения, которые имеют место, например, при коротких замыканиях, применяется форсировка (быстрое увеличение) возбуждения генераторов, что способствует прекращению электрических качаний и сохранению устойчивости параллельной работы генераторов. Кроме того, быстродействующее регулирование и форсировка возбуждения повышают надежность работы релейной защиты и облегчают условия самозапуска электродвигателей собственных нужд электростанций.

Читайте также:  Уаз буханка схемы генераторов

Рис.1. Изменение напряжения возбуждения при форсировке

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V = 0,632(Uf,пот — Uf,ном) / Uf,номt1 (рис.1), и отношение потолочного напряжения к номинальному напряжению возбуждения Uf,пот / Uf,ном = kф — так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь kф≥2, а скорость нарастания возбуждения не менее 2 1/с. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 1/с для гидрогенераторов до 4 MBА включительно и не менее 1,5 1/с для гидрогенераторов больших мощностей.

Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляется более высокое требование (kф=3-4, скорость нарастания возбуждения до 10Uf,ном в секунду).

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов 800-1000 МВт принято время 15 с, 1200 МВт — 10 с (ГОСТ533-85Е).

Системы возбуждения генераторов можно разделить на две группы: независимое возбуждение и самовозбуждение (зависимое возбуждение).

К первой группе относятся все электромашинные возбудители постоянного и переменного тока, сопряженные с валом генератора. Вторую группу составляют системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы. К этой группе могут быть отнесены системы возбуждения с отдельно установленными электромашинными возбудителями, приводимыми во вращение электродвигателями переменного тока, которые получают питание от шин собственных нужд электростанций.

Независимое возбуждение генераторов

Независимое возбуждение генераторов получило наибольшее распространение. Основное достоинство этого способа состоит в том, что возбуждение синхронного генератора не зависит от режима электрической сети и поэтому является наиболее надежным.

На генераторах мощностью до 100 МВт включительно применяют, как правило, в качестве возбудителя генератор постоянного тока, соединенный с валом синхронного генератора (рис.2).

Рис.2. Принципиальная схема независимого электромашинного возбуждения генератора

Возбуждение самого возбудителя выполнено по схеме самовозбуждения (обмотка возбуждения возбудителя LGE питается от якоря самого возбудителя). Регулирование возбуждения возбудителя осуществляется вручную шунтовым реостатом RR, установленным в цепи LGE, или автоматически регулятором возбуждения АРВ.

Недостатки системы возбуждения с генератором постоянного тока определяются в основном недостатками самого возбудителя. Одним из недостатков является сравнительно невысокая скорость нарастания возбуждения, особенно у возбудителей гидрогенераторов, которые имеют низкую частоту вращения (V=1-2 1/с).

Другой недостаток рассматриваемой системы возбуждения характерен для турбогенераторов, имеющих большую частоту вращения. Он обусловлен снижением надежности работы генератора постоянного тока из-за вибрации и тяжелых условий работы щеток и коллектора (условий коммутации).

Для турбогенераторов мощностью выше 165 МВт мощность возбуждения становится настолько значительной, что выполнить надежно работающий генератор постоянного тока на частоту вращения 3000 об/мин по условиям коммутации становится затруднительным.

Для снижения частоты вращения возбудителя с целью повышения надежности его работы иногда выполняют соединение возбудителя с валом генератора через редуктор. Такая система была применена для ряда турбогенераторов, в том числе и для генераторов ТГВ-300 и ТВМ-300. Недостатком этой системы возбуждения является наличие дополнительной механической передачи.

Для возбуждения крупных генераторов в СССР применяются системы возбуждения с полупроводниковыми выпрямителями.

В системе возбуждения с использованием полупроводниковых выпрямителей с валом турбогенератора сочленен вспомогательный генератор, напряжение которого выпрямляется и подводится к обмотке ротора турбогенератора (рис.3).

Рис.3. Принципиальная схема высокочастотного возбуждения турбогенератора

В качестве вспомогательного генератора применяется высокочастотный генератор индукторного типа. Такой генератор не имеет обмотки на вращающемся роторе, что повышает его надежность в эксплуатации. Повышенная частота (500 Гц) позволяет уменьшить габариты и повысить быстродействие системы возбуждения.

Индукторный высокочастотный генератор-возбудитель ВГТ имеет три обмотки возбуждения, расположенные вместе с трехфазной обмоткой переменного тока на неподвижном статоре. Первая из них LGE1 включается последовательно с обмоткой ротора основного генератора LG и обеспечивает основное возбуждение ВГТ. Благодаря включению LGE1 последовательно с обмоткой ротора основного генератора обеспечивается резкое увеличение возбуждения ВГТ при коротких замыканиях в энергосистеме вследствие броска тока в роторе. Обмотки IGE2 и LGЕЗ получают питание от высокочастотного подвозбудителя GEA через выпрямители. Подвозбудитель (высокочастотная машина 400 Гц с постоянными магнитами), как и вспомогательный генератор ВГТ, соединен с валом турбогенератора.

Регулирование тока в LGE2 и LGE3 осуществляется с помощью двух устройств — соответственно регуляторов электромагнитного типа АРВ (автоматический регулятор возбуждения) и УБФ (устройство бесконтактной форсировки возбуждения).

Читайте также:  Фамилии для вампиров генератор

Устройство АРВ обеспечивает поддержание напряжения генератора в нормальном режиме работы изменением тока в обмотке LGE2. Устройство УБФ обеспечивает начальное возбуждение генератора и его форсировку при снижении напряжений более чем на 5%.

Высокочастотная система возбуждения обеспечивает kф=2 и скорость нарастания напряжения возбуждения не менее 2 1/с.

Рис.4. Принципиальная схема независимого тиристорного возбуждения генераторов

Принципиальная схема системы независимого тиристорного возбуждения (ТН) представлена на рис.4. На одном валу с генератором G располагается синхронный вспомогательный генератор GE, который имеет на статоре трехфазную обмотку с отпайками. В схеме, показанной на рис.4, имеются две группы тиристоров: рабочая VS1 и форсировочная VS2. На стороне переменного тока они включены на разное напряжение, на стороне постоянного тока — параллельно. Возбуждение генератора в нормальном режиме обеспечивает рабочая группа тиристоров VS1, которые открываются подачей на управляющий электрод соответствующего потенциала.

Форсировочная группа при этом почти закрыта. В режиме форсировки возбуждения тиристоры FS2, питающиеся от полного напряжения вспомогательного генератора, открываются полностью и дают весь ток форсировки. Рабочая группа при этом запирается более высоким напряжением форсировочной группы.

Рассмотренная система имеет наибольшее быстродействие по сравнению с другими системами и позволяет получить kф>2. Системы независимого тиристорного возбуждения нашли широкое применение. Ранее, до освоения отечественной промышленностью производства тиристоров достаточной мощности, по аналогичным схемам выполнялись схемы ионного независимого возбуждения (ИН), где применялись ртутные вентили с сеточным управлением.

Все генераторы с рассмотренными выше возбудителями имеют специальную конструкцию для подвода тока к обмотке ротора. Она представляет собой контактные кольца на валу ротора, к которым ток подводится с помощью щеток. Такая контактная система недостаточно надежна. Этот недостаток особенно проявляется при токах возбуждения 3000 А и более (генераторы мощностью 300 МВт и больше).

Перспективной, особенно для турбогенераторов большой мощности, является система бесщеточного возбуждения, не обладающая указанными недостатками. В этой системе возбуждения, сущность которой поясняет рис.5, нет подвижных контактных соединений.

Рис.5. Принципиальная схема бесщеточного возбуждения генераторов

Источником энергии для питания обмотки ротора LG является вспомогательный синхронный генератор GE. Этот генератор выполнен по типу обратимых машин, т.е. обмотка переменного тока расположена на вращающейся части, а обмотка возбуждения неподвижна. Возбуждение генератора GE осуществляется от возбудителя GEA.

Ток от вращающейся обмотки переменного тока вспомогательного генератора подводится через проводники, закрепленные на валу, к вращающемуся полупроводниковому (обычно кремниевому) выпрямителю. Выпрямленный ток подводится непосредственно к обмотке возбуждения основного генератора.

Регулирование тока возбуждения в обмотке ротора LG производится изменением тока в обмотке возбуждения вспомогательного генератора LGE.

Вращающийся полупроводниковый преобразователь VD снаружи закрывается звукопоглощающим кожухом.

Система бесщеточного возбуждения интенсивно совершенствуется и является перспективной для генераторов всех типов, особенно для турбогенераторов большой мощности (300-1200 МВт).

Системы самовозбуждения

Системы самовозбуждения менее надежны, чем системы независимого возбуждения, поскольку в них работа возбудителя зависит от режима сети переменного тока. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих случаях должна обеспечить форсировку тока в обмотке ротора генератора.

Рис.6. Принципиальная схема зависимого электромашинного возбуждения

Принципиальная схема возбуждения синхронного генератора с электромашинным возбудительным агрегатом показана на рис.6. Возбудительный агрегат состоит из асинхронного двигателя М, питающегося от шин собственных нужд электростанции и генератора постоянного тока GE. Для повышения надежности работы возбудительного агрегата при форсировке возбуждения асинхронный двигатель, вращающий возбудитель GE, выбирается с необходимой перегрузочной способностью.

Такие возбудительные агрегаты получили широкое распространение на электростанциях в качестве резервных источников возбуждения.

Рис.7. Принципиальная схема полупроводникового самовозбуждения

Один из возможных вариантов схем самовозбуждения с полупроводниковыми преобразователями представлен на рис.7.

Основными элементами схемы являются: две группы полупроводниковых преобразователей — неуправляемые вентили VD и управляемые VS, трансформатор силового компаундирования ТА и выпрямительный трансформатор ТЕ.

Неуправляемые вентили VD получают питание от трансформаторов ТА, вторичный ток которых пропорционален току статора генератора, управляемые вентили VS получают питание от трансформатора ТЕ, вторичное напряжение которого пропорционально напряжению генератора.

Вентили VD, ток которых пропорционален току статора генератора, обеспечивают возбуждение машины при нагрузке и форсировку возбуждения при коротких замыканиях. Мощность вентилей VS рассчитывают таким образом, чтобы она была достаточна для возбуждения генераторов на холостом ходу и для регулирования возбуждения в нормальном режиме. В номинальном режиме неуправляемые вентили обеспечивают 70-80% тока возбуждения генератора. При надлежащем выборе параметров система полупроводникового самовозбуждения по своим свойствам приближается к системе независимого тиристорного (ионного) возбуждения и поэтому применяется на мощных синхронных машинах. Ранее промышленность широко выпускала системы ионного самовозбуждения с ртутными вентилями.

Источник

Adblock
detector