Меню

Что такое встречное включение обмоток возбуждения генератора

Большая Энциклопедия Нефти и Газа

Встречное включение — обмотка — возбуждение

Генераторы со встречным включением обмоток возбуждения не обеспечивают постоянства напряжения и широкого применения не нашли. [16]

Знак минус ( -) соответствует встречному включению обмоток возбуждения . В двигателях нормального исполнения встречное включение обмоток приводит к значительному увеличению тока якоря вследствие снижения общего магнитного потока. [17]

При пуске в ход двигателя смешанного возбуждения со встречным включением обмоток возбуждения поток последовательной обмотки может заметно ослабить результирующий поток двигателя и этим осложнить пусковую операцию. Чтобы избежать этого, последовательную обмотку таких двигателей иногда замыкают на себя на все время пуска. [18]

При смешанном возбуждении возможно как согласное, так и встречное включение обмоток возбуждения . [19]

Электродвигатель смешанного возбуждения может быть с согласным и с встречным включением обмотки возбуждения . В первом случае магнитные потоки параллельной и последовательной обмоток возбуждения имеют одинаковое направление; во втором случае магнитные потоки обмоток возбуждения направлены противоположно друг другу. [21]

В двигателях смешанного возбуждения возможно как согласное, так и встречное включение обмоток возбуждения . Двигатели со встречным включением обмоток не нашли широкого применения, так как они обладают плохими пусковыми свойствами и работают неустойчиво. Характеристики двигателей смешанного возбуждения занимают промежуточное положение между характеристиками двигателей параллельного и последовательного возбуждения. [22]

Какой вид имеет внешняя характеристика генератора со смешанным возбуждением при согласном и встречном включении обмоток возбуждения . [23]

При смешанном возбуждении ( компаундном) возможно как согласное, так и встречное включение обмоток возбуждения . Двигатели со встречным включением обмоток почти не применяются, так как они обладают плохими пусковыми свойствами и работают неустойчиво. [24]

Наиболее простая схема магиитомодуляционного датчика, выполненного на одном сердечнике, приведена на рис. 4.8. Встречное включение обмоток возбуждения ws, расположенных симметрично относительно середины сердечника, обеспечивает развязку цепей возбуждения и выхода и позволяет свести к минимуму величину выходного напряжения в отсутствие внешнего поля. Недостатком схемы является гистерезисный уход нуля, обусловленный тем, что в среднем сечении сердечника практически отсутствует переменное магнитное поле. [25]

Наиболее простая схема магнитомодуляционного датчика, выполненного на одном сердечнике, приведена на рис. 4.8. Встречное включение обмоток возбуждения WB , расположенных симметрично относительно середины сердечника, обеспечивает развязку цепей возбуждения и выхода и позволяет свести к минимуму величину выходного на-пряження в отсутствие внешнего поля. Недостатком схемы является гистерезисный уход нуля, обусловленный тем, что в среднем сечении сердечника практически отсутствует переменное магнитное поле. [26]

При согласном включении последовательной и параллельной обмоток возбуждения двигатель смешанного возбуждения имеет больший пусковой момент по сравнению с шунтовым двигателем. При встречном включении обмоток возбуждения двигатель имеет жесткую механическую характеристику. [28]

Переменный ток возбуждения создает в обмотках возбуждения МП, превышающее в несколько раз МП насыщения сердечника Не. В отсутствие внешнего МП перемагничивание сердечника по петле гистерезиса приводит к возникновению импульсов напряжения в сигнальной обмотке, спектр которых включает в себя составляющие с частотой возбуждения и нечетных гармоник. Встречное включение обмоток возбуждения позволяет заметно снизить проникновение в сигнальную обмотку напряжения с частотой возбуждения. При воздействии внешнего МП вдоль оси сердечника петля гистерезиса смещается на величину внешнего поля, в сигнальной обмотке индуцируется напряжение, в спектре которого преобладающей является вторая гармоника частоты возбуждения, амплитуда которой пропорциональна проекции МП на ось сердечника. Полярность индуцируемого напряжения меняется при смене знака внешнего поля. Преобразование выделенного узкополосным усилителем сигнала второй гармоники производится фазовым ( синхронным) детектором. Опорное напряжение с удвоенной частотой формируется из напряжения возбуждения. Выход фазового детектора обычно подключается к третьей обмотке, которая наматывается поверх сигнальной, для создания отрицательной обратной связи по МП. Введение отрицательной обратной связи расширяет пределы измерения, линеазирует передаточную характеристику и расширяет полосу пропускания ФМ. [29]

Источник

Генератор смешанного возбуждения. Схема включения, характеристики

Рис. 9-1.Схемы генераторов и дзигателей независимого (о), параллельного (б), последовательного (в) исмешанного (г) возбуждения (сплошные стрелки — направ­ления токов в режиме генератора, штриховые — в режиме двигателя)

Генераторы смешанного возбуждения имеют две обмотки возбуждения, расположенные на общих главных полюсах: параллельную и последовательную. Если эти обмоткн создают н. с. одина­кового направления, то их включение называется согласным; в противном случае соединение обмоток возбуждения называется встречным.

Наибольшее практическое применение находят генераторы с согласным включением обмоток возбуждения. Наибольшую долю МДС возбуждения создает параллельная обмотка ОВШ. Последовательная обмотка рассчитывается так, чтобы ее МДС несколько превышала МДС размагничивающей составляющей реакции якоря Fв,qd. В результате подмагничивающего действия последовательной обмотки напряжение генератора с ростом I будет возрастать, как это видно на внешней характеристике U=f(I) при ΣRв= const, изображенной на рис. 13. Уровень повышения напряжения генератора с ростом тока I зависит от числа витков последовательной обмотки.

Читайте также:  Lc генератор принцип работы схемы область применения

Характеристика холостого хода и нагрузочная характеристика генератора смешанного возбуждения снимаются так же, как и у генератора параллельного возбуждения, и имеют такой же характер.

В зависимости от соотношения между МДС последовательной (сериесной) обмотки возбуждения Fc и размагничивающей составляющей реакции якоря Fв,qd нагрузочная характеристика может располагаться или выше, или ниже характеристики холостого хода. При достаточно сильной последовательной обмотке нагрузочная характеристика (кривая 2) идет выше характеристики холостого хода (кривая 1) (рис. 14).

Генераторы смешанного возбуждения при встречном включении обмоток применяются относительно редко. У этих генераторов последовательная обмотка будет создавать МДС, направленную так же, как и МДС размагничивающей составляющей реакции якоря.

Генератор смешанного возбуждения самовозбуждается так же , как и генератор параллельного возбуждения,( Условия самовозбуждения генератора)

1. Наличие остаточного магнитного потока

2. Правильное подключение обмотки возбуждения. Магнитный поток, должен совпадать по направлению с остаточным

3. Сопротивление в цепи возбуждения должно быть меньше некоторого критического

4. Скорость вращения якоря должна быть больше некоторой критической

и их х.х.х. аналогичны. Х.к.з можно снять только при питании параллельной обмотки возбуждения от постороннего источника, если действие последовательной обмотки является встречным, так как при согласном действии обмоток возбуждения возникает недопустимо большой ток К.З.

Источник

Генераторы смешанного возбуждения

Генератор смешанного возбуждения имеет параллельную и последовательную обмотки возбуждения, поэтому он совмещает в себе свойства генераторов обоих типов (рисунок 1 г). Обмотки возбуждения могут включаться согласно или встречно. При согласном включении обмоток возбуждения МДС обоих обмоток направлены в одну сторону и при увеличении нагрузки магнитный поток увеличивается. При встречном включении МДС обмоток направлены встречно и результирующий магнитный поток при увеличении нагрузки уменьшается. Как правило, применяется согласное включение обмоток возбуждения, при этом главную роль играет параллельная обмотка возбуждения. Последовательная обмотка предназначена для компенсации МДС реакции якоря и падения напряжения в цепи якоря при определенной нагрузке. Этим достигается практически постоянное по величине напряжение генератора в определенных пределах изменения тока нагрузки.

Характеристика холостого хода генератора смешанного возбуждения ничем не отличается от характеристики генератора параллельного возбуждения т.к. на холостом ходу ток в последовательной обмотке равен нулю и генератор работает как параллельный.

Нагрузочные характеристики U=f(Iв) при I=const и n=const (рис. 1 ) имеют аналогичный вид, что и у генератора независимого возбуждения. Однако при согласном включении последовательной обмотки нагрузочная характеристика генератора смешанного возбуждения (кривая 2) пойдет выше, чем такая же характеристика генератора независимого или паралельного возбуждения (кривая 3).

Рис. 1 – Нагрузочные характеристики генератора смешанного возбуждения

При достаточно сильной последовательной обмотке возбуждения нагрузочная характеристика может располагаться выше характеристики холостого хода (кривая 1). В последнем случае действие последовательной обмотки возбуждения можно рассматривать как подмагничивающую реакцию якоря.

Внешняя характеристика U=f(I) при rв=const и n=const (рис. 2). Вид характеристики зависит от числа ампер-витков последовательной обмотки возбуждения.

Рис. 2 – Внешние характеристики генератора смешанного возбуждения

При согласном включении можно рассчитать последовательную обмотку так, чтобы напряжение генератора U при токе Iв было равно номинальному напряжению Uн, т.е. в этом режиме МДС последовательной обмотки полностью компенсирует размагничивающее действие реакции якоря и падение напряжения в цепи якоря. Поэтому у такого генератора по мере увеличения тока нагрузки напряжение на зажимах изменяется незначительно (кривая 1).

Для поддержания постоянного напряжения на зажимах приемников электроэнергии необходимо скомпенсировать еще и падение напряжения в линии электропередачи, действие реакции якоря и падение напряжения в цепи якоря. В этом случае усиливают последовательную обмотку и внешняя характеристика такого перекомпаундированного генератора будет иметь вид кривой 2. Если обмотки возбуждения включены встречно, то напряжение генератора при росте нагрузки будет резко падать (кривая 3). Генератор называют в этом случае противокомпаундным. Такое включение используют в сварочных генераторах. Для сравнения на рисунке 2.12 дана характеристика генератора параллельного возбуждения (кривая 4).

Регулировочная характеристика Iв=f(I) при U=const и n=const (рис. 3). Для нормально-компаундированного генератора (кривая 1) ток возбуждения в параллельной обмотке при изменении нагрузки от I=0 до I=Iн должен изменяться незначительно, т.к. размагничивающее действие реакции якоря и падение напряжения в цепи якоря компенсируется последовательной обмоткой.

Рис. 3 – Регулировочные характеристики генератора смешанного возбуждения

В перекомпаундированном генераторе (кривая 2) при росте нагрузки необходимо даже снижать ток возбуждения, т.к. в таком генераторе с ростом нагрузки поток будет увеличиваться за счет увеличения МДС последовательной обмотки.

В противокомпаундном генераторе для поддержания U=const с ростом нагрузки необходимо резко увеличивать ток возбуждения Iв в параллельной обмотке (кривая 3). Для сравнения на рис.3, показана регулировочная характеристика генератора параллельного возбуждения (кривая 4).

Читайте также:  Защита генератора от понижения напряжения

Характеристика короткого замыкания. Эта характеристика может быть снята только при питании параллельной обмотки возбуждения от постороннего источника питания и при встречном включении последовательной обмотки, т.к. при согласном включении возникает недопустимо большой ток короткого замыкания. Если затем снять характеристику короткого замыкания с отключенной последовательной обмоткой, то можно определить МДС этой обмотки и теоретически построить характеристику короткого замыкания для случая согласного включения обмоток.

Источник

Генератор смешанного возбуждения

Генератор смешанного возбуждения (рис. 19, а) имеет па­раллельную и последовательную обмотки возбуждения. Поток возбуждения создается в основном параллельной обмоткой. По­следовательная обмотка обычно включается согласно с парал­лельной (чтобы МДС обмоток складывались), что обеспечивает получение жесткой внешней характеристики генератора.

Рис. 19. Схема включения генера­тора смешанного возбуждения (а)

и его внешние характеристики (б)

В режиме х.х. генератор имеет только параллельное возбуждение, так как I = 0. С появлением нагрузки возника­ет МДС последовательной об­мотки возбуждения, которая, подмагничивая машину, ком­пенсирует размагничивающее действие реакции якоря и па­дение напряжения в якоре.

Внешняя характеристика в этом случае становится наиболее жесткой (рис. 19, б, кривая 2), т. е. напряжение на зажимах генератора при увеличении тока остается почти не­изменным. Если же требуется, чтобы напряжение на зажимах потребителя (в конце линии) оставалось практически неиз­менным, то число витков последовательной обмотки увеличивают так, чтобы МДС этой обмотки компенсировала еще и падение напряжения в проводах линии (кривая 1).

При встречном включении обмоток возбуждения напряже­ние генератора с ростом тока нагрузки резко уменьшается (кривая 3), что объясняется размагничивающим действием последовательной обмотки возбуждения, МДС которой направлена против МДС парал­лельной обмотки. Встречное включение обмоток применяют лишь в генераторах специального назначения, например в сварочных, где необходимо получить круто падающую внешнюю характеристику.

Генераторы смешанного возбуждения с согласным включени­ем обмоток возбуждения применяют для питания силовой нагруз­ки в случаях, когда требуется постоянство напряжения в линии.

Контрольные вопросы

1. Какие характеристики определяют свойства генераторов постоянного тока?

2. Почему у генератора параллельного возбуждения изменение напряжения при сбросе нагрузки больше, чем у генератора независимого возбуждения?

3. Каковы условия самовозбуждения генераторов постоянного тока?

4. При каком включении обмоток возбуждения генератора смешанного возбуждения внешняя характеристика получается более «жесткой»?

Коллекторные двигатели

Основные понятия

Коллекторные машины обладают свойством об­ратимости, т. е. они могут работать как в режиме генератора, так и в режиме двигателя. Поэтому если машину постоянного тока подключить к источнику энергии постоянного тока, то в обмотке возбужде­ния и в обмотке якоря машины появятся токи. Взаи­модействие тока якоря с полем возбуждения создает на якоре электромагнитный момент М, который яв­ляется не тормозящим, как это имело место в гене­раторе, а вращающим.

Под действием электромагнитного момента яко­ря машина начнет вращаться, т. е. машина будет ра­ботать в режиме двигателя, потребляя из сети элек­трическую энергию и преобразуя ее в механичес­кую. В процессе работы двигателя его якорь враща­ется в магнитном поле. В обмотке якоря индуциру­ется ЭДС Еанаправление которой можно опреде­лить по правилу «правой руки». По своей природе она не отличается от ЭДС, наводимой в обмотке якоря генератора. В двигателе же ЭДС направлена против тока Iа и поэтому ее называют противо-электродвижущей силой (противо-ЭДС) якоря (рис. 20).

Для двигателя, работающего с постоянной час­тотой вращения,

Из (29.1) следует, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмот­ки якоря и падением напряжения в цепи якоря. На основании (29.1) ток якоря

(29.2)

Умножив обе части уравнения (29.1) на ток яко­ря 1а,получим уравнение мощности для цепи якоря:

(29.3)

где UIa – мощность в цепи обмотки якоря; – мощность электрических потерь в цепи якоря.

Рис.20. Направление противо-ЭДС в обмотке якоря двигателя

Для выяснения сущности выражения EaIaпроделаем следую­щее преобразование:

(29.4)

где – угловая частота вращения якоря; Рэм – электромагнитная мощность двигателя.

Следовательно, выражение EaIa представляет собой электромаг­нитную мощность двигателя.

Преобразовав выражение (29.3) с учетом (29.4), получим

Анализ этого уравнения показывает, что с увеличением на­грузки на вал двигателя, т. е. с увеличением электромагнитного момента М, возрастает мощность в цепи обмотки якоря UIa, т. е. мощность на входе двигателя. Но так как напряжение, подводимое к двигателю, поддерживается неизменным (U = const), то увеличе­ние нагрузки двигателя сопровождается ростом тока в обмотке якоря Iа.

В зависимости от способа возбуждения двигатели постоянного тока, так же как и генераторы, разделяют на двигатели с возбуждени­ем от постоянных магнитов (магнитоэлектрические) и с электромаг­нитным возбуждением. Последние в соответствии со схемой включе­ния обмотки возбуждения относительно обмотки якоря подразделяют на двигатели параллельного (шунтовые), последовательного (сериесные) и смешанного (компаундные) возбуждения.

Читайте также:  Инструкции по эксплуатации генераторов honda

В соответствии с формулой ЭДС Еа = сеФп частота вращения двигателя (об/мин)

Подставив значение Еаиз (29.1), получим (об/мин)

(29.5)

т. е. частота вращения двигателя прямо пропорциональна на­пряжению и обратно пропорциональна магнитному потоку воз­буждения. Физически это объясняется тем, что повышение на­пряжения U или уменьшение потока Ф вызывает увеличение разности (U — Еа); это, в свою очередь, ведет к росту тока 1а. Вследствие этого возросший ток повышает вращающий момент, и если при этом нагрузочный момент остается неизмен­ным, то частота вращения двигателя увеличивается.

Из (29.5) следует, что регулировать частоту вращения двига­теля можно изменением либо напряжения U, подводимого к дви­гателю, либо основного магнитного потока Ф, либо электрическо­го сопротивления в цепи якоря Sr.

Направление вращения якоря зависит от направлений магнит­ного потока возбуждения Ф и тока в обмотке якоря. Поэтому, из­менив направление какой-либо из указанных величин, можно из­менить направление вращения якоря. Следует иметь в виду, что переключение общих зажимов схемы у рубильника не дает изме­нения направления вращения якоря, так как при этом одновремен­но изменяется направление тока и в обмотке якоря, и в обмотке возбуждения.

Пуск двигателя

Ток якоря двигателя определяется формулой (29.2). Если при­нять U и Sr неизменными, то ток 1азависит от противо-ЭДС Еа.Наибольшего значения ток 1адостигает при пуске двигателя в ход. В начальный момент пуска якорь двигателя неподвижен (п = 0) и в его обмотке не индуцируется ЭДС а= 0). Поэтому при непо­средственном подключении двигателя к сети в обмотке его якоря возникает пусковой ток

Обычно сопротивление Sr невелико, поэтому значение пус­кового тока достигает недопустимо больших значений, в 10–20 раз превышающих номинальный ток двигателя.

Такой большой пусковой ток весьма опасен для двигателя. Во-первых, он может вызвать в машине круговой огонь, а во-вторых, при таком токе в двигателе развивается чрезмерно большой пус­ковой момент, который оказывает ударное действие на вращаю­щиеся части двигателя и может механически их разрушить. И, на­конец, этот ток вызывает резкое падение напряжения в сети, что неблагоприятно отражается на работе других потребителей, вклю­ченных в эту сеть. Поэтому пуск двигателя непосредственным подключением в сеть (безреостатный пуск) обычно применяют для двигателей мощностью не более 0,7–1,0 кВт. В этих двигате­лях благодаря повышенному сопротивлению обмотки якоря и не­большим вращающимся массам значение пускового тока лишь в 3–5 раз превышает номинальный, что не представляет опасности для двигателя. Что же касается двигателей большей мощности, то при их пуске для ограничения пускового тока используют пуско­вые реостаты (ПР), включаемые последовательно в цепь якоря (реостатный пуск).

Перед пуском двигателя необходимо рычаг Р реостата поста­вить на холостой контакт О (рис. 21). Затем включают рубиль­ник, переводят рычаг на первый промежуточный контакт 1 и цепь якоря двигателя оказывается подключенной к сети через наиболь­шее сопротивление реостата rп.р = r1 + r2 + r3 + r4.

Рис. 21. Схема включения пускового реостата

Одновременно через рычаг Р и шину Ш к сети подключается обмотка возбуждения, ток в которой в течение всего периода пус­ка не зависит от положения рычага Р, так как сопротивление ши­ны по сравнению с сопротивлением обмотки возбуждения пренеб­режимо мало.

Пусковой ток якоря при полном сопротивлении пускового реостата

(29.7)

С появлением тока в цепи якоря Iп max возникает пусковой мо­мент Мп mах, под действием которого начинается вращение якоря. По мере нарастания частоты вращения увеличивается противо-ЭДС Еа = сеФп, что ведет к уменьшению пускового тока и пуско­вого момента.

По мере разгона якоря двигателя рычаг пускового реостата переключают в положения 2, 3 и т. д. В положении 5 рычага рео­стата пуск двигателя заканчивается (rп.р = 0). Сопротивление пус­кового реостата выбирают обычно таким, чтобы наибольший пус­ковой ток превышал номинальный не более чем в 2–3 раза.

Так как вращающий момент двигателя М прямо пропорциона­лен потоку Ф, то для облегчения пуска двигателя па­раллельного и смешанного возбуждения сопротивление реостата в цепи возбуждения rрг следует полностью вывести (rрг = 0). Поток возбуждения Ф в этом случае получает наибольшее значение и двигатель развивает необходимый вращающий момент при мень­шем токе якоря.

Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громозд­кими. Поэтому в двигателях большой мощности применяют без­реостатный пуск двигателя путем понижения напряжения. Приме­рами этого являются пуск тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельное при нормальной работе или пуск двига­теля в схеме «генератор–двигатель».

Источник

Adblock
detector