Меню

Формула расчета автомобильного генератора

Расчет трехфазного генератора на постоянных магнитах

Напряжение генератора переменного тока прямо пропорционально скорости движения магнитов, и соответственно оборотом генератора. То-есть если обороты увеличились в два раза, то и напряжение соответственно увеличится в два раза.

Чтобы вычислить напряжение генератора на определенных оборотах нужно магнитную индукцию магнитов (Тл) умножить на активную длину проводника (м), и умножить на скорость движения магнитов (м/с). Формула расчета выглядит так.

Формула очень простая, скорость магнитов вычислить легко, достаточно вычислить длину окружности и умножить на количество оборотов генератора. Активная длинна проводника это та часть которую перекрывают магниты. А вот индукцию магнитов можно только измерить или вычислить путем прокрутки готового генератора. Если индукция магнитов не известна то ее можно брать равной 0,8Тл. Это значение справедливо для аксиальных генераторов где расстояние между магнитами равно толщине самих магнитов. У генераторов с железными статорами не все так однозначно, но тоже при использовании разумной толщины магнитов (3-5мм) индукция в зазоре будет примерно 0,8Тл.

Пример расчета генератора

Так-как высота магнитов 40мм, то значит и активная длинна в катушках 40мм или 0,04м. За один оборот генератора магниты продавливают расстояние (L=2πr) 27/2*3,14=84,78см. Получается за один оборот магниты преодолеют 0,84м. Возьмем формулу выше E=B·V·L и подставим значения.

0,8*0,84*0,04=0,02V, это означает что при скорости вращения 1об/с или 60об/м напряжение одного витка катушки составит 0,02 вольта.

Чтобы узнать напряжение фазы генератора нужно посчитать количество витков. Из информации выше известно что в генераторе 18 катушек по 70 витков, значит в фазе 6 катушек. 6*70=420витков. теперь 420*0,02=8,4вольта. Таким образом мы знаем что напряжение фазы при 60об/м равно 8,4вольта. Если фазы генератора соединить в звезду то напряжение поднимется в 1,7раза, это значит 8,4*1,7=12,28вольта. Вот так вычисляется напряжение генератора. Так-как напряжение генератора пропорционально скорости движения магнитов, то при 60об/м=12,2вольта, при 120об/м=24,4вольта, при 180об/м=36,6вольта, и так далее.

Еще момент: Но если на бумаге начертить схему расположения магнитов и катушек в этом генераторе, то будет видно что магниты перекрывают лишь половину катушек фазы, это значит что не все сразу витки катушек фаз участвуют в выработке энергии. И это надо учитывать, выше написано что в фазе 420 витков, но только половина из них перекрывается магнитами значит всего 210витков будет вырабатывать напряжение. А это получается 420/2=210*0,02=4,2вольта при 60об/м с фазы, если фазы соединить в звезду, то 4,2*1,7=7,14 вольта. Площадь магнитов тоже не маловажный фактор.

Как вычислить силу тока генератора.

Можно посчитать какой ток выдаст генератор на аккумулятор, но не известно сопротивление фазы. Тогда можно сопротивление вычислить. Если в генераторе катушки намотаны проводом 1мм, а средняя длинна витка в катушке 0,08м, а витков в катушках по 70. Получается 420*0,08=33,6метра. Сопротивление 1м провода толщиной 1мм равно 0,0224Ом значит 33,6*0,0224=0,75Ом. Сопротивление фазы равно 0,75Ом, чтобы узнать сопротивление всего генератора при соединении звезду нужно сопротивление умножить на 1,7 получится 0,75*1,7=1,27Ом. Теперь когда известно сопротивление можно посчитать ток генератора.

Например нам надо узнать какой ток генератор выдаст на аккумулятор 14 вольт при 300об/м. Тогда от напряжения генератора 44,4вольта (7,4*6) нужно отнять напряжение аккумулятора 14 вольт и разделить на сопротивление генератора 44,4-14=30.4/1,27=23А. Получается что ток на аккумулятор составит 23А.

Но в реальности ток будет меньше потому что не учтено сопротивление аккумулятора, оно хоть и небольшое, но присутствует. Так-же сопротивление соединяющих проводов, например если провода 20 метров и он тонкий то это существенное сопротивление. Так-же есть еще активное и реактивное сопротивление генератора, которое может быть достаточно большим и значимым.

Из-за активного и реактивного генератора падает общий КПД самого генератора, так-как на внутреннем сопротивлении теряется мощность ( нагрев катушек и т.п.). Поэтому в реальности сила тока будет меньше. На малых оборотах и при небольшом токе можно КПД генератора брать около 0,8мм, тогда 23*0,8=18,4Ампер.В среднем из-за разных других потерь рекомендуют брать средний КПД около 0,5, тогда в реальности будет 23*0,5=11,5Ампер, но все же основной показатель это сопротивление генератора.

Читайте также:  Генератор монограмма из инициалов

В общем для примерного расчета генератора нужны всего две основные формулы, это формула расчета напряжения генератора, и формула расчета силы тока генератора.

Конечно, как я уже упоминал здесь учитывается не все моменты от которых зависит напряжение и ток генератора, но основные моменты, от которых координатно зависят характеристики генератора здесь учтены. Если вооружиться этими двумя формулами и проверить готовые генераторы, все параметры которых известны, то результаты будут очень близки к реальным генераторам. Перед написанием статьи я проверил так-же и свои генераторы, если брать КПД 50% то данные практически совпадают, разброс на разных оборотах 10-20%.

Если возникли вопросы, или вы заметили неточности, то оставляйте комментарии под этой статьей.

Источник

Расчёт генератора, основные параметры и изготовление

Для расчёта напряжения генератора воспользуемся простой формулой, она очень простая и не должна вызвать проблем. Подробнее с примером можно почитать здесь — Расчёт ЭДС генератора. Про фазы и соединения катушек будет ниже, а пока разберемся с напряжением генератора.

Формула E=B·V·L где: Е-напряжение генератора (V). B-магнитная индукция магнитов(Тл). V-скорость движения магнитов (м/с). L-активная длина проводника (м).

С буквой Е — это напряжение генератора, которое нам нужно вычислить, а далее буква В — которая не известна, так-как мы не знаем какая магнитная индукция магнитов. Но если помучить поисковик и почитать форумы, то можно узнать что магнитная индукция неодимовых магнитов около 1,25Тл, конечно она разная для разных марок магнитов, но это среднее значение. Так-же известно что чем дальше от магнита — тем меньше и магнитная индукция. В общем если в случае изготовления дискового генератора расстояние между магнитами на противоположных дисках будет равно толщине магнитов, то магнитная индукция будет примерно 1.0Тл, если расстояние больше, то естественно магнитное поле будет слабее. Если к примеру у вас магниты толщиной 10мм, и вы делаете расстояние между магнитами 10мм, то индукция будет где то 1.0Тл, а статор в этом случае получится не более 8мм толщиной, и по 1мм на зазоры. Если расстояние будет скажем 12-14мм, то магнитная индукция упадет до 0.8-0.7Тл и ниже.

Для генераторов с железом принцип такой-же, но толщина магнитов может быть разная, некоторые ставят магниты толщиной 10-15мм, хотя для магнитной индукции в 1.0Тл достаточно толщины магнитов 3-4мм. Ещё важна толщина — магнито-пропускаемость статора, на зубы которого наматываются катушки. Если переборщить с толщиной магнитов то статор не сможет замкнуть всё магнитное поле и оно выйдет наружу, и к статору снаружи будет магнитися железо. То-есть это потери магнитного поля и нет смысла использовать слишком мощные магниты так-как часть магнитного поля не будет использоваться. Все конечно зависит от конкретных условий, но если не известна магнитная индукция, то лучше её брать как 0.8-1Тл.

Вернемся к формуле, V — это скорость движения магнитов, рассчитать её очень просто. К примеру если диаметр ротора с магнитами у нас 20см, то 20*3.14=62.8см. То-есть получается что за один оборот магниты проходят расстояние 62.8см или 0.62метра. Если диаметр ротора 8см, то аналогично 8*3.14=25.12см или 0.25м.

L — это активная длина проводника, то-есть это та длинна медного провода, которая попадает под магниты, ведь именно только тот участок провода вырабатывает электричество, который попадает под магнитное поле магнитов. Для дисковых аксиальных генераторов длинна активного проводника равна длинне магнитов. К примеру если у вас круглые магниты размером 30*10мм, то L=30мм, ну а если прямоугольные размером 50*30*10мм, то L=50мм. Для генераторов с железным статором активная длинна проводника равна ширине статора.

Активная длинна проводника

Теперь попробуем высчитать напряжение генератора, но сначало разберемся с катушками генератора

Ниже схема соединения однофазного генератора

Соединение катушек

Соединение катушек трехфазного генератора

Соединение катушек

Вернёмся к формуле E=B·V·L. К примеру планируется намотать 18 катушек проводом 1.0 мм, и в катушку помещается по 80 витков, значит всего у нас витков 18*80=1440 витков. Если генератор однофазный то так и считаем по всем катушкам, а если трёхфазный то будем брать катушки одной фазы, в данном случае шесть катушек в фазе, а потом вычислим данные при соединении звездой или треугольником. Я буду считать трёхфазный, по этому беру шесть катушек 80*6=480витков.

Читайте также:  7100104 ремень генератора bobcat s175 10х1112

Магниты у нас к примеру 30*10мм (по 12шт на диске), значит активная длинна проводника 0.03м, если статор железный, то берётся ширина статора. Диски с магнитами у нас к примеру диаметром 20см, но надо брать диаметр по центру магнитов, значит минус 1,5см по кругу и того 20-3см=17*3.14=53.38см или 0.53м. Хочу напомнить что толщина железных дисков должна быть не менее толщины магнитов, иначе магнитное поле выйдет за железо и не будет участвовать в выработке электричества и магнитная индукция будет ниже, а если у вас к примеру ротор асинхронного двигателя, то после проточки желательно одеть металлическую гильзу и на неё клеить магниты, или вытачивать цельно-металлический ротор, так магниты будут использоваться эффективнее и можно или получить больше мощности или сэкономить на толщине магнитов.

И так теперь у нас есть необходимые данные для расчёта напряжения генератора к примеру при 60об/м. Магнитную индукцию возьмём равной 1Тл. Скорость движения магнитов у нас за оборот 0.53м, значит при 60об/м будет 1об/с, то-есть 0.53м/с — скорость движения магнитов. Активная длинна проводника нам тоже известна и равна 0.03м. Тогда 0.03м нужно умножить на количество витков в катушке (80) и на количество катушек (6), и получится 0.03*480=14.4м.

Теперь представляем значения в формулу E=B(1Тл)*V(0.53м)*L(14.4м), получается E=7.632V. В общем при 60об/м получается напряжение фазы 7.6 вольт. Напряжение генератора растёт линейно в зависимости от оборотов, значит при 120об/м будет 15.2 вольта, а при 240об/м будет 30.4 вольт. А при 300об/м будет 38.0 вольт. Зарядка начнётся при 120об/м если соединить фазы генератора треугольником. При соединении звездой напряжение генератора будет выше в 1,7 раза, значит зарядка начнётся ещё раньше, при 90об/м.

Но если нарисовать виртуальный статор с катушками и магнитами, то можно увидеть что магнит не перекрывает собой полностью катушку и 30% активной зоны не перекрывается как бы не стоял магнит, а это значит что 30% не участвует в выработке напряжения и это надо учитывать. Часто получается так что магнит перекрывает только половину катушки, и это значит что только половина витков участвует в выработке электричества. Значит в нашем случае напряжение будет ниже на 30% чем получилось, то-есть не E=7.632V, а E=5V.

Теперь поговорим про ток генератора, его сопротивление и соединение звездой и треугольником

Чем меньше сопротивление — тем выше сила тока зарядки и меньше потерь на нагрев, по-этому сопротивление обмотки генератора нужно делать как можно меньше. В нашем генераторе состоящем из 18 катушек всего 18*80=1440 витков, это по 480 витков в фазе. Чтобы узнать сопротивление фазы нужно узнать длинну провода в фазе и его сечение. Длина одного витка в среднем примерно 0.08м, значит 0.08*480=38.4м. Сопротивление одного метра медного провода сечением 1мм равно 0.0224Ом. Далее 38.4*0.0224=0.86Ом.

Таблица сопротивления медного провода

Чтобы узнать какой будет ток зарядки аккумулятора нужно знать напряжение генератора и его сопротивление, что мы уже знаем. Чтобы вычислить нужно от напряжения холостого хода генератора отнять напряжение генератора, и полученную сумму разделить на сопротивление, и получится ток зарядки. К примеру у нас при соединении звездой при 120об/м напряжение в холостую равно 10V*1.7=17 вольт. Тогда от 17 вольт отнимем напряжение аккумулятора 17-13 вольт и получим разницу в 4 вольта, разделим на сопротивление 1,46Ом, и получим 4:1.46=2.7Ампер. И так можно вычислить силу тока на каждых оборотах генератора, а чтобы получить мощность зарядки нужно амперы умножить на вольты, в данном случае 2.7*13=35.1 ватт*ч. А уже при 240об/м напряжение в холостую будет в два раза больше, так-как растёт линейно, тогда уже 20V-13=7:1.46=4.7 Ампер.

Но здесь играет роль не только сопротивление самого генератора, но и сопротивление провода от генератора до аккумулятора, сопротивление диодного моста, на котором падает до 1вольт напряжения, и сопротивление самого аккумулятора. Все это высчитать можно, но довольно сложно. Так-же изменяется сопротивление генератора во время работы, по-этому сумма общих потерь может составлять до 50% от мощности, и в итоге ток зарядки может оказаться в два раза меньше расчетного. И так-как это трудно все учесть на потери в среднем можно скинуть 30%, значит реально а аккумулятор пойдёт ток не 4.7Ампер при 240об/м, а значительно ниже, около 3.5-4 Ампера.

Читайте также:  Схема ремня генератора мерседес спринтер 313

Такой расчёт дает примерное представление о будущем генераторе, но все-же это лучше чем делать как получится ничего не считая, и потом удивляться тому что или напряжение слишком низкое или высокое, или сопротивление слишком большое и смешной ток зарядки. Просчитав свои генераторы я убедился в справедливости такого расчёта генератора.

При расчете генератора нужно учитывать что его будет крутить ветроколесо ветрогенератора, и у ветроколеса есть свои обороты, и генератор нужно хоть примерно делать под будущий винт. Если это будет вертикальный ветряк, то его ветроколесо вращается очень медленно по сравнению с горизонтальным винтом. И в связи с этим нужно чтобы зарядка начиналась на очень низких оборотах генератора. Чтобы зарядка начиналась рано нужно чтобы напряжение было выше напряжения аккумулятора, отсюда нужно в катушках иметь как можно больше витков. Но чем больше витков тем длиннее провод, а значит и сопротивление, а сопротивление определяет силу тока зарядки. В итоге чтобы генератор был мощный и рано начиналась зарядка, нужно его рассчитать так чтобы и мощность была, и ветроколесо не перегрузить — иначе оно не выйдет на свои обороты и не наберет мощности.

С горизонтальным винтом генератор нужен не такой большой и материалоемкий как для вертикального, у горизонтальных винтов обороты в среднем в 5 раз выше, от этого и генератор нужен в пять раз меньше и во столько же раз дешевле. Расчёты витроколёс есть в даругих статьях из раздела «Расчёты ветряков». Советую вам и с этим материалом ознакомится, так-как ветрогенератор это единый механизм и его узлы должны быть подходящими по параметрам друг для друга, иначе или винт слишком мощный и малооборотистый или генератор слишком мощный, и толку от такого ветряка будет мало.

Предварительный шаблон генератора

Рисунок генератора

Размеры катушки

Чтобы подогнать генератор под ветроколесо или наоборот потом ветроколесо под генератор нужно высчитать мощность генератора на разных оборотах, к примеру при 120об/м когда начнётся зарядка аккумулятора, и начнётся нагрузка на ветроколесо, и далее при 180,240,300,360,420,480,540,600об/м.

Исходя из выше рассчитанных данных мы получили 17вольт при 120об/м, сопротивление у нас 1.46Ом. более точные данные будут если мерить напряжение во время зарядки в реальном времени, но я для малого тока взял напряжение аккумулятора равным 13 вольт, а далее исходил из напряжения 14 вольт. В итоге ниже получились вот такие расчёты, но на более высоких оборотах при большой разнице холостого напряжения и напряжения при заряде аккумулятора КПД генератора будет падать и ток зарядки опять-же не будет таким большим, хотя генератор будет грузить винт на большую мощность, потери будут на нагреве катушек и в проводах. В общем ток зарядки будет ниже ещё на 10-20%.

при 120об/м — 17-13=4:1.46=2.7А*13=35ватт
при 180об/м — 25.5-14=11.5:1.46=7.8А*14=110ватт
при 240об/м — 34-14=20:1.46=13.6А*14=190ватт
при 300об/м — 42.5-14=28.5:1.46=19.5А*14=273ватт
при 360об/м — 51-14=37:1.46=25.3А*14=354ватт
при 420об/м — 59-14=45:1.46=31А*14=436ватт
при 480об/м — 68-14=54:1.46=36.9А*14=516ватт
при 600об/м — 85-14=71:1.46=48.6А*14=680ватт

Но ветроколесо желательно при расчёте делать на 30% мощнее чем расчетные данные генератора, и так чтобы на низких оборотах ветроколесо было чуть мощнее генератора. У нас при 120об/м 35ватт с генератора, значит ветроколесо должно при 120об/м иметь мощность около 40-50ватт. Если ветроколесо будет слабее, то генератор не позволит ему раскрутится до своих оборотов и в итоге обороты будут ниже и мощность тоже. Подробнее про расчёты ветроколес смотрите статьи в разделе, там всё есть.

Источник

Adblock
detector