Меню

Генератор высокой частоты назначение

Высокочастотный генератор: обзор, особенности,виды и характеристики

Основное предназначение высокочастотного генератора заключается в том, что он создает колебания электрического поля. Диапазон этих колебаний имеет довольно широкие границы: от нескольких десятков килогерц и до сотен мегагерц.

Общее описание устройства ВЧ

Большинством обычных людей этот прибор используется для остановки счетчика. Высокочастотный генератор действительно способен останавливать работу такой техники, создавая колебания. Кроме того, этот прибор можно также использовать в качестве питания для обычных бытовых устройств. Если говорить о мощностях, то выходное напряжение достигает 220 А, а мощность — 1 кВт. Также возможна замена некоторых элементов на более мощные. Если это сделать, то выходные характеристики высокочастотного генератора повысятся, и с его помощью станет возможно питать большее количество агрегатов или же несколько, но уже более мощных. Подключение же самого ВЧ осуществляется к обычной бытовой сети. Здесь важно отметить, что схема электрических проводов довольно проста, и изменять ее как-либо нет смысла. К тому же нет необходимости в использовании системы заземления для этого прибора. При подключении таких колебательных агрегатов в сеть они не полностью останавливают работу счетчика. Агрегат продолжает работать, но при этом ведется учет лишь 25 % от реального расхода электроэнергии.

Действие прибора

Если разобраться более подробно с работой высокочастотного генератора, то остановка техники происходит из-за того, что в схеме прибора используется конденсатор. Подключение осуществляется именно к этой детали, которая имеет заряд, полностью совпадающий с синусоидой напряжения, протекающего в сети. Осуществление заряда происходит посредством импульсов с высокой частотой. Таким образом, получается, что ток, который потребитель расходует из своей домашней сети, становится высокочастотным импульсом. Обычные же электронные счетчики, установленные в домах, характеризуются отсутствием чувствительности к такого рода колебаниям. Это означает, что учитывать расход тока импульсной формы агрегат будет с отрицательной погрешностью.

Описание схемы

Схема высокочастотного генератора характеризуется наличием определенных ключевых элементов. К ним относятся: выпрямитель, емкость, транзистор. Далее, если говорить о подключении конденсатора, то он последовательно включается в схему с выпрямителем. Это необходимо для того, чтобы во время того, как выпрямитель работает на транзистор, конденсатор мог заряжаться до того размера напряжения, которое имеется в сети.

Чаще всего пределом зарядки конденсатора в высокочастотном генераторе становится 2 кГц. Если говорить о напряжении, которое в данный момент присутствует на нагрузке и емкости устройства, то оно приближается к синусу на 220 В. Для того чтобы ограничить ток, протекающий через транзистор в то время, как заряжается емкость, в схеме имеется резистор, который подключается с каскадом ключа, используя последовательное соединение.

Особенности выполнения ВЧ

Генератор выполняется полностью на логических элементах. Он производит колебания или импульсы с частотой 2 кГц, а также с амплитудой в 5 Вольт. Имеется также такая характеристика, как сигнальная частота. Значение этого параметра определяется элементами С2 и R7. В стандартных схемах обозначения используют именно такой формат подписи. Свойства, которые дают эти элементы, могут применяться для того, чтобы настроить максимальную погрешность учета расхода энергии. За создание импульсов отвечают такие элементы, как Т2 и Т3 — транзисторы. Вместе их называют создателем импульсов. Эта деталь отвечает также за правильную работу транзистора Т1.

Такие устройства, как выпрямитель, трансформатор и другие используются в качестве небольшого блока питания. Основная задача — это поставка энергии для работы микросхемы с другими элементами. Такие небольшие блоки питания обычно рассчитаны на 36 В.

Высокочастотный генератор сигналов Г4-151

Основное предназначение такого генератора заключается в настройке, проверке, регулировке и испытаниях радиотехнических устройств. При помощи данного прибора можно обеспечить измерение амплитудно-частотной характеристики, чувствительности, избирательности и т.д. Кроме этого, использовать данную аппаратуру можно и в качестве источника сигнала, который работает с разными способами модуляции колебаний. Это может быть амплитудная, частотная или импульсная модуляция. Также возможно создание немодулированных колебаний. Чаще всего такое оборудование используют в поверочных органах, в мастерских по ремонту оборудования, в цехах или лабораториях.

Читайте также:  Генератор твс 30 технические характеристики

Вывод информации у данного высокочастотного генератора сигналов — это обычный цифровой код. Кроме этого, для удобства управления имеются аналоговые входы, позволяющие дистанционно регулировать все параметры аппарата.

Собственноручная сборка

Так как собирать реальную схему высокочастотного генератора своими руками может быть трудно, имеется несколько упрощенный вариант сборки. В таком случае вместо транзистора в схеме будет использоваться элемент с отрицательным сопротивлением. Еще такие элементы довольно часто называют усилительными. Если говорить совсем простыми словами, то ток на выходе таких приборов всегда больше, чем ток на их входе.

К входу такого прибора подключается колебательный контур. Далее очень важно с выхода этого же усилителя через обратную связь необходимо подключить его к этому же колебательному контуру. Соединив схему таким образом, получите следующий результат. На вход поступает ток определенного значения, проходя через усилительный элемент, он увеличивается, чем подпитывает контурный конденсатор. При помощи обратной связи уже усиленный ток возвращается снова на вход в схему, где опять усиливается. Такой круговой процесс происходит постоянно. Именно он и вызывает незатухающие колебания внутри генератора.

Ламповый ВЧ

Одна из разновидностей ге нераторов сигналов высокочастотных — это ламповые устройства. Такие приборы используют для того, чтобы получать плазму с нужными параметрами. Для этого нужно подвести определенный разряд к мощности устройства. У таких приборов ключевыми элементами являются эмиттеры, работа которых основывается на принципе подведения мощности.

Еще одним важным элементом для работы ламповых ВЧ стали усилители мощности. Эти детали, установленные на лампах, используются для того, чтобы преобразовать постоянный ток в переменный. Естественно, что эксплуатация лампового генератора невозможна без самой лампы. Использовать можно различные элементы. Довольно распространенным стал тетрод ГУ-92А. Данная деталь является электронной лампой, для работы которой используется четыре элемента: анод, катод, экранирующая и управляющая сетки.

Источник

Генераторы высокой частоты

Высокочастотные измерительные генераторы (генераторы ВЧ) пред-назначаются для испытаний и наладки радиоустройств (входных цепей, усилителей высокой и промежуточной частот радиоприемников), питания измерительных схем, снятия амплитудно-частотных характеристик четырехполюсников и т. п.

Они генерируют как синусоидальные, так и модулированные по амплитуде и частоте колебания.

С целью уменьшения взаимосвязей отдельных элементов генератора, влияющих на стабильность его работы, устранения или сильного ослабления влияния внешних паразитных электромагнитных полей, а также «пролезания» генерируемых колебаний помимо

выходного устройства все узлы и блоки генератора тщательно экранируют.

На рис. 5-6 приведена структурная схема типового генератора сигналов высокой частоты.

Важнейшим узлом прибора является задающий генератор, который служит для создания синусоидальных колебаний в заданном диапа-зоне частот.

К нему предъявляют два основных требования: высокая стабиль-ность частоты и «чистота» формы генерируемых колебаний.

Для удовлетворения этих требований задающий генератор наи-более часто выполняют по схеме LC-генератора с так называемой электронной связью между анодной и сеточной цепями (по схеме Шембеля-Доу). Колебательные контуры генератора выполняют из высокодобротных деталей. В схеме применяется температурная ком-

пенсация нестабильности частоты или термостабилизация элементов контуров. Лампа задающего генератора ставится в облегченный режим. Возможно выполнение ЗГ и на транзисторе.

Перестройка частоты задающего генератора в пределах поддиа-пазона производится изменением емкости переменного конденсатора колебательного контура. Переключение поддиапазонов осуществляется сменой катушек индуктивности контуров. Обычно эти элементы колебательных контуров задающего генератора сопряжены с аналогичными элементами анодного (коллекторного) контура буфферного усилителя — модулятора.

Буферный усилитель генератора обычно строят по схеме резонанс-ного усилителя с LС-контуром. Он уменьшает реакцию задающего генератора на изменение внешней нагрузки и усиливает напряжение колебаний, поступающих от задающего генератора. Иногда буферный усилитель выполняет роль умножителя частоты (Г4-7Л).

В некоторых типах генераторов Г4 регулировка уровня напряжения, подаваемого на выходные аттенюаторы, осуществляется в буферном каскаде. Так, например, в Г4-18А этот уровень регулируется путем изменения постоянного напряжения на экранной сетке лампы усилителя-модулятора. На эту же сетку в режиме амплитудной модуляции через разделительную емкость подается переменное модулирующее напряжение низкой частоты от внутреннего или внешнего источника.

Читайте также:  Ultimate car mod генератор

Внутренние источники модулирующего напряжения, применяемые в генераторах ВЧ, чаще всего являются генераторами синусоидальных колебании низкой частоты (400 или 1000 Гц). Однако это могут быть и импульсные генераторы (как, например, в генераторах ГЗ-8, Г4-9).

Система аттенюаторов (плавный и ступенчатый аттенюаторы и выносной делитель, рис. 5-6) служит для плавной и ступенчатой регулировки выходного сигнала.

Примечание. f — установленное по шкале генератора значение ча-стоты; НГ — непрерывная генерации; AM — амплитудная модуляции; ЧМ — частотная модуляция; ИМ — импульсная модуляция.

Контрольные приборы предназначаются для измерения параметров выходного сигнала (например, выходного уровня и коэффициента
глубины модуляции).

В настоящее время выпускаются генераторы типов Г4-18А, Г4-42,Г4-45 и др.

Основные характеристики некоторых высокочастотных генераторов даны в табл. 5-2.

Импульсные генераторы

Импульсные генераторы — источники импульсных сигналов различной формы — применяются при испытаниях, регулировках и на-стройках импульсных электронных устройств, при снятии переходных

характеристик отдельных узлов и всей схемы; используются в качестве источников, модулирующих напряжение в генераторах сверхвысоких частот, и т. д.

Наибольшее применение находят измерительные генераторы перио-дической последовательности прямоугольных импульсов, общая структурная схема которых представлена на рис. 5-7.

В этой схеме задающий генератор ЗГ вырабатывает напряжение, частота которого регулируется в заданных пределах, и определяет частоту следования импульсов выходного сигнала. Наиболее часто —это блокинг-генератор или мультивибратор, реже — генератор синусоидальных колебаний RС-типа.

Формирующее устройство вырабатывает прямоугольные импульсы различной длительности. В состав формирующего устройства могут входить ограничители, линии задержки, ждущие блокинг-генераторы и мультивибраторы, фантастроны, триггеры и т. п.

Выходное устройство необходимо для согласования генератора с нагрузкой и содержит обычно инвертирующий каскад и катодный (эмиттерный) повторитель, что позволяет на низкоомной нагрузке (50, 75, 150, 200 Ом) получать импульсы обеих полярностей. Выходное устройство содержит также делители напряжения для регулирования напряжения выходных импульсов.

Измерители параметров выходного сигнала предназначаются для измерения высоты, а иногда и для контроля формы импульсов выход-ного сигнала.

Генераторы могут иметь вспомогательные устройства — схему внешнего запуска и выход импульсов синхронизации.

Схема внешнего запуска позволяет синхронизировать частоту следования выходных импульсов напряжением внешнего генератора и, как правило, имеет усилительный и инвертирующий каскады.

Импульсы на выходе синхронизации, несколько опережающие импульсы на основном выходе генератора, часто используют для запуска внешних приборов (например, осциллографа).

Один из способов формирования периодической последователь-ности прямоугольных импульсов поясняется рис. 5-8 и 5-9.

Как уже отмечалось, формирующее устройство в измерительном генераторе выполняет две задачи: задержку фронта импульсов основного выхода относительно фронта импульсов на выходе синхронизации и формирование прямоугольных импульсов основного выхода (импульсов заданной длительности, с крытыми фронтами и срезами и плоскими вершинами). Поэтому оно включает схемы задержки и формирования импульсов.

Время задержки импульсов на основном выходе относительно импульсов синхронизации (рис. 5-8) либо плавно регулируется (переключатели В1 в положении 1), либо фиксированно (переключатели В1 в положении 2).

В первом случае импульс, выработанный задающим генератором в момент времени t0, запускает одновибратор. Последний выдает прямоугольный импульс, длительность которого (τ3 = t1 — t0) устанавливается оператором. Этот импульс дифференцируется RС-цепочкой, в результате чего образуются два остроконечных импульса: отрицательный, фронт которого соответствует времени t0, и положительный, фронт которого соответствует времени среза импульса t1. Отрицательный импульс ограничивается диодным ограничителем, а положительный поступает на ждущий блокинг-генератор, который запускается и выдает короткий импульс с крутым фронтом. Этим импульсом запускается схема формирования, выходных прямоугольных импульсов. Таким образом, фронт выходного импульса оказывается задержанным относительно фронта выходного синхронизирующего импульса на время τ3. Во втором случае импульс от задающего генератора задерживается искусственной линией задержки на время 0,2—0,5 мкс.

Схема формирования прямоугольных импульсов (рис. 5-9) рабо-тает следующим образом. Задержанный импульс со схемы задержки поступает на ждущий блокинг-генератор. Блокинг-генератор выраба-тывает короткий импульс с очень крутым фронтом. Этот импульс поступает на две цепи: на двусторонний ограничитель 1 и на катодный повторитель.

Читайте также:  Можно ли в генераторе случайных чисел подстроить нужное число

Ограничитель 1 формирует из поступившего импульса короткий
прямоугольный импульс определенной высоты. Этим импульсом запу- скается ждущий блокинг-генератор широкого импульса. Так как запуск производится импульсом с фиксированной, относительно небольшой высотой, в начале импульсов нет выбросов вершины. Крутизна фронта широкого импульса, формируемого ждущим блокинг-генератором широкого импульса, определяется крутизной запускающего импульса.

Параметры этого блокинг-генератора подобраны такими, чтобы дли-тельность его импульса τш.и была больше максимальной требуемой длительности выходных импульсов (например, в приборах Г5-8 и Г5-15 при максимальной длительности выходных импульсов 10 мкс длительность τш.и = 12÷15 мкс).

Нужная длительность выходных импульсов обеспечивается срывом работы блокинг-генератора широкого импульса в момент времени t2. Срыв работы блокинг-генератора происходит потому, что в момент t2 выход блокинг-генератора широкого импульса шунтируется электрон-ным ключом. Такой метод позволяет получить импульсы нужной дли-тельности с крутым срезом. Момент срыва t2 определяется временем задержки, установленным на искусственных линиях задержки.

Сформированные таким образом импульсы с крутыми фронтами и срезами поступают на ограничитель 2, где выравниваются («срезаются»)вершины, и затем на выходное устройство.

Измерители высоты импульсов 1 многих импульсных измерительных генераторов строятся по схемам, реализующим метод сравнения измеряемой высоты импульсов с образцовым напряжением.

Рисунки 5-10 и 5-11 поясняют принцип действия одного из вариантов таких измерителей.

Измеритель высоты импульсов (рис. 5-10) содержит сравнивающее устройство (диод Д, импульсный трансформатор Тр), источник

образцового напряжения (переменный резистор R, подключенный к стабилизированному напряжению UCT) и индикатор равенства изме-ряемого и образцового напряжений. Индикатор равенства — неоно-вая лампа HЛ — для повышения чувствительности измерителя (и тем самым точности измерения) подключен к выходу сравнивающего устройства через усилитель импульсов и одновибратор — расширитель импульсов сравнения. Применение расширителя импульсов позволяет сделать чувствительность индикатора равенства практически независимой от длительности измеряемых импульсов.

Измеритель высоты импульсов работает следующим образом.

Первоначально образцовое напряжение устанавливают максимальным (Uо.макс; рис. 5-11, 2) и заведомо большим высоты импульсов, поступающих на вход измерителя (рис. 5-11, 1).

Поскольку образцовое напряжение U0.макс включено встречно и больше высоты импульсов Um, сравнивающий диод Д закрыт, через первичную обмотку трансформатора ток не проходит и на его вторичной обмотке нет напряжения. Одновибратор находится в состоянии устойчивого равновесия, которое характеризуется низким напряже-нием между точками подключения электродов неоновой лампочки HЛ1 и она не горит. Затем образцовое напряжение с помощью резистора R снижают до величины U0, несколько меньшей высоты импульсов Um (рис. 5-11).При этом на время действия импульсов диод Д открывается и через первичную обмотку трансформатора протекают импульсы тока (рис. 5-11, 3). Во вторичной обмотке трансформатора индуцируются импульсы напряжения (t2, которые после усиления в нужной полярности поступают на одновибратор и переводят его в неустойчивое состояние, характеризующееся резким повышением напряжения на неоновой лампе. Неоновая лампа загорается, что свидетельствует о примерном равенстве высоты импульсов Um и образцового напряжения U0. После возвращения одновибратора в исходное положение лампа гасится(момент t2).

В момент прихода следующего импульса (t3) лампа снова вспых-нет, затем погаснет и т.д. Поскольку минимальная частота повторения импульсов обычно превышает 10 Гц, свечение неоновой лампы воспринимается как немигающее. Значение образцового напряжения (а следовательно, и высоту импульсов) можно определить по шкале резистора R, заранее градуированного в значениях напряжения.

С помощью рассмотренного измерителя можно не только измерять высоту импульсов, но и устанавливать ее определенное значение. Для этого первоначально уменьшают высоту импульсов до нуля, устанавливают по шкале резистора R нужное напряжение и плавно повышают высоту импульсов до момента зажигания индикаторной лампы. Очевидно, что при этом установленная высота импульсов примерно равна образцовому напряжению.

Относительная погрешность измерения и установки высоты импуль-сов подобными измерителями обычно не превышает ±10%.

Основные характеристики некоторых генераторов импульсов при-
ведены в табл. 5-3.

Источник

Adblock
detector