Меню

Ir2153 в схемах генераторов

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

IR2153 — параметры микросхемы, даташит и схемы блоков питания

На основе микросхемы IR2153 и силовых IGBT транзисторов было сконструировано множество схем, таких как драйвер и генератор индукционного нагревателя, источник питания для катушки Тесла, DC-DC преобразователи, импульсные источники питания и так далее. А связка NGTB40N120FL2WG + IR2153 работают вместе как нельзя лучше, где IR2153 является драйвером — задающим генератором импульсов, а пара биполярных транзисторов с изолированным затвором на 40А/1000В может обрабатывать большой ток нагрузки.

Схемы включения IR2153

Если вы собираетесь повторить одну из этих схем — вот архив с файлами печатных плат. Схема формирователя стробирующих импульсов для их управления работает от 15 В постоянного тока — на транзисторы выходного каскада подаётся до 400 В напряжения.

IR2153 импульсный блок питания на плате

Кстати, IR2153 — это улучшенная версия популярных микросхем IR2155 и IR2151, которая включает высоковольтный полумостовой драйвер затвора. IR2153 предоставляет больше возможностей и проще в использовании, чем предыдущие м/с. Тут имеется функция отключения, так что оба выхода формирователя стробирующих импульсов могут быть отключены с помощью низкого напряжения сигнала. Помехоустойчивость была значительно улучшена, как за счет снижения пиковых импульсов. Наконец, особое внимание было уделено максимально всесторонней защите от электростатических разрядов на всех выводах.

Источник

Преобразователь напряжения на микросхеме IR2153

Микросхема IR2153 — самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое токопотребление и может питаться через ограничительный резистор.


Микросхема, активно применяется не только в схема сетевых ИБП, но и в самодельных преобразователях напряжения. Схема такого преобразователя напряжения приведена ниже. Конструкция проста и может быть легко повторена радиолюбителями.

В схеме использованы мощные N-канальные полевые ключи серии IRFZ44, хотя для повышения мощности ПН можно использовать более мощные полевые транзисторы IRF3205.

Трансформатор — сердечник был использован от импульсного блока питания для галогенных ламп 12 вольт. Все штатные обмотки убраны, на их место намотал новые. Таким образом, первичная обмотка содержит 2х5 витков, провод с диаметром 1-1,5мм. Для более удобной намотки я использовал 6 жил более тонкого провода (диаметр каждой жилы 0,3мм), т.е. общий диаметр получается 1,8мм.

Вторичная обмотка (повышающая) мотается поверх первичной. Заранее первичную обмотку изолируют 10-ю слоями прозрачного скотча. Обмотка содержит 85-90 витков, провод с диаметром 0,2мм, ставить межслойные изоляции не нужно.

В моем случае ПН был изготовлен для питания ламп дневного освещения, поэтому вторичная обмотка трансформатора содержит 145 витков.

Транзисторы через изолирующие прокладки нужно установить на теплоотвод. В качестве нагрузки использовалась, лампа дневного освещения на 40 ватт и тепловыделение на транзисторах было норме. Максимальная мощность ПН достигает до 80 ватт, при этом схема будет потреблять до 11-12 Ампер.

Источник

Ir2153 в схемах генераторов

Как видно из таблицы отличия между микросхемами не очень большие — все три имеют одинаковый шунтирующий стабилитрон по питанию, напряжения питания запуска и остановки у всех трех почти одинаковая. Разница заключается лишь в максимальном токе оконечного каскада, от которого зависит какими силовыми транзисторами и на каких частотах микросхемы могут управлять. Как не странно, но самая распиаренная IR2153 оказалась не рыбой, не мясом — у нее не нормирован максимальный ток последнего каскада драйверов, да и время нарастания-спада несколько затянуто. По стоимости они тоже отличаются — IR2153 самая дешовая, а вот IR2155 сама дорогая.
Частота генератора, она частота преобразования ( на 2 делить не нужно ) для IR2151 и IR2155 определяется по формулам, приведенным ниже, а частоту IR2153 можно определить из графика:

Для того, чтобы выяснить какими транзисторами можно управлять микросхемами IR2151, IR2153 и IR2155 следует знать параметры данных транзисторов. Наибольший интерес при состыковке микросхемы и силовых транзисторов представляет энергия затвора Qg, поскольку именно она будет влиять на мгновенные значения максимального тока драйверов микросхемы, а значит потребуется таблица с параметрами транзисторов. Здесь ОСОБОЕ внимание следует обратить на производителя, поскольку этот параметр у разных производителей отличается. Наиболее наглядно это видно на примере транзистора IRFP450.
Прекрасно понимаю, что для разового изготовления блока питания десяти-двадцати транзисторов все таки многовато, тем не менее на каждый тип транзистора повесил ссылку — обычно я покупаю там. Так что нажимайте, смотрите цены, сравнивайте с розницей и вероятностью купить левак. Разумеется я не утверждаю, что на Али только честные продавцы и весь товар наивысшего качества — жуликов везде полно. Однако если заказывать транзисторы, которые производятся непосредственно в Китае на дерьмо наскочить гораздо сложнее. И именно по этой причине я предпочитаю транзисторы STP и STW, причем даже не брезгую покупать с разборки, т.е. Б/У.

Как известно, наиболее точно динамические свойства полевого транзистора характеризуют не значение его паразитных емкостей, а полный заряд затвора — Q g . Значение параметра Q g связывает между собой математическим путем — импульсный ток затвора с временем переключения транзистора, тем самым предоставляя возможность разработчику правильно рассчитать узел управления.
К примеру, у полевого транзистора IRF840 при токе стока I s = 8 A, напряжении сток — исток U ds = 400 В и напряжении затвор — исток U gs = 10 В полный заряд затвора равен Q g = 63 нКл. При неизменно напряжении затвор — исток заряд затвора уменьшается с увеличением тока стока Is и с уменьшением напряжения сток — исток Ugs.
Произведем расчет параметров схемы управления при условии, что необходимо достигнуть времени включения транзистора ton = 120 нс. Для этого ток управления драйвера должен иметь значение:

I g = Q g / t on = 63 х 10 -9 / 120 х 10 –9 = 0,525 (A) (1)

При амплитуде импульсов управляющего напряжения на затворе Ug = 15 В сумма выходного сопротивления драйвера и сопротивления ограничительного резистора не должна превышать:

Читайте также:  Жаркие каникулы фотострана генераторы

R max = U g / I g = 15 / 0,525 = 29 (Ом) (2)

Расчитаем выходное выходное сопротивление драйверного каскада для микросхемы IR2155:

R on = U cc / I max = 15V / 210mA = 71,43 ohms
R off = U cc / I max = 15V / 420mA = 33,71 ohms

Учитывая расчетное значение по формуле (2) Rmax = 29 Ом приходим к заключению, что с драйвером IR2155 заданное быстродействие транзистора IRF840 получить невозможно. Если в цепи затвора будет установлен резистор Rg = 22 Ом, время включении транзистора определим следующим образом:

RE on = R on + R gate, где RE — суммарное сопротивление, R out — выходное сопротивление драйвера, R gate — сопротивление, установленное в цепь затвора силового транзистора = 71,43 + 22 = 93,43 ohms;
I on = U g / RE on, где I on — ток открытия, U g — величина управляющего напряжения затвора = 15 / 93,43 = 160mA;
t on = Q g / I on = 63 х 10-9 / 0,16 = 392nS
Время выключения можно расчитать используюя теже формулы:
RE off = R out + R gate, где RE — суммарное сопротивление, R out — выходное сопротивление драйвера, R gate — сопротивление, установленное в цепь затвора силового транзистора = 36,71 + 22 = 57,71 ohms;
I off = U g / RE off, где I off — ток открытия, U g — величина управляющего напряжения затвора = 15 / 58 = 259mA;
t off = Q g / I off = 63 х 10-9 / 0,26 = 242nS
К получившимся величинам необходимо добавить время собственного открытия — закрытия транзистора в результате чего реальное время t on составит 392 + 40 = 432nS, а t off 242 + 80 = 322nS.
Теперь осталось убедится в том, что один силовой транзистор успеет полность закрыться до того, как второй начнет открываться. Для этого сложим t on и t off получая 432 + 322 = 754 nS, т.е. 0,754 µS. Для чего это нужно? Дело в том, что у любой из микросхем, будь то IR2151, или IR2153, или IR2155 фиксированное значение DEAD TIME, которое составляет 1,2 µS и не зависит от частоты задающего генератора. В даташнике упоминается, что Deadtime (typ.) 1.2 µs, но там же приводится и сильно смущающий рисунок из которого напрашивается вывод, что DEAD TIME составляет 10% от длительности управляющего импульса:

Чтобы развеять сомнения была включена микросхема и подключен к ней двухканальный осцилограф:

Питание составляло 15 V, а частота получилась 96 кГц. Как видно из фотографии при развертке 1 µS длительность паузы составляет совсем немного больше одного деления, что как раз и соответсвует примерно 1,2 µS. Далее уменьшаем частоту и видим следующее:

Как видно из фото при частоте 47 кГц время паузы практически не изменилось, следовательно вывеска, гласящая, что Deadtime (typ.) 1.2 µs является истинной.
Поскольку микросхем уже работала нельзя было удержаться еще от одного эксперимента — снизить напряжение питания, чтобы убедиться, что частота генератора увеличится. В результате получилась следующая картинка:

Однако ожидания не оправдались — вместо увеличения частоты произошло ее уменьшение, причем менее чем на 2%, чем вообще можно принебречь и отметить, что микросхема IR2153 держит частоту достаточно стабильно — напряжение питания изменилось более чем на 30%. Так же следует отметить, что несколько увеличилось время паузы. Этот факт несколько радует — при уменьшении управляющего напряжения немного увелифивается время открытия — закрытия силовых транзисторов и увеличение паузы в данном случае будет весьма полезным.
Так же было выяснено, что UV DETECT прекрасно справляется со своей функцией — при дальнейшем снижении напряжения питания генератор останавливался, а при увеличии микросхема снова запускалась.
Теперь вернемся к нашей математике по результатам которой мы выснили, что при установленных в затворах резисторах на 22 Ома время закрытия и открытия у нас равно 0,754 µS для транзистора IRF840, что меньше паузы в 1,2 µS, дающую самой микросхемой.
Таким образом при микросхема IR2155 через резисторы 22 Ома вполне нормально сможет управлять IRF840, а вот IR2151 скорей всего прикажет долго жить, поскольку для закрытия — открытия транзисторов нам потребовался ток в 259 mA и 160 mA соответсвенно, а у нее максимальные значения составляют 210 mA и 100 ma. Конечно же можно увеличить сопротивления, установленные в затворы силовых транзисторов, но в этом случае существует риск выйти за пределы DEAD TIME. Чтобы не заниматься гаданием на кофейной гуще была составлена таблица в EXCEL, которую можно взять ЗДЕСЬ. Подразумевается, что напряжение питание микросхемы составляет 15 В.
Для снижения коммутационных помех и некоторого уменьшения времени закрывания силовых транзисторов в импульсных блоках питания используют шунтирование либо силового транзистора последовательно сединенными резистором и конденсатором, либо такой же цепочкой шунтируют сам силовой трансформатор. Данный узел называется снаббером. Резистор снабберной цепи выбирают номиналом в 5–10 раз больше сопротивления сток — исток полевого транзистора в открытом состоянии. Емкость конденсатора цепи определяется из выражения:
С = tdt/30 х R
где tdt — время паузы на переключения верхнего и нижнего транзисторов. Исходя из того, что продолжительность переходного процесса, равная 3RC, должна быть 10 раз меньше длительности значения мертвого времени tdt.
Демпфирование задерживает моменты открывания и закрывания полевого транзистора относительно перепадов управляющего напряжения на его затворе и уменьшает скорость изменения напряжения между стоком и затвором. В итоге пиковые значения импульсов затекающего тока меньше, а их длительность больше. Почти не изменяя времени включения, демпфирующая цепь заметно уменьшает время выключения полевого транзистора и ограничивает спектр создаваемых радиопомех.

С теорией немного разобрались, можно приступить и практическим схемам.
Самой простой схемой импульсного блока питания на IR2153 является электронный трансформатор с минимумом функций:

В схеме нет ни каких дополнительных функций, а вторичное двуполярное питание формируется двумя выпрямителями со средней точкой и парой сдвоенных диодов Шотки. Емкость конденсатора С3 определяется из расчета 1 мкФ емкости на 1 Вт нагрузки. Конденсаторы С7 и С8 равной емкости и распологаются в пределах от 1 мкФ до 2,2 мкФ. Мощность зависит от используемого сердечника и максимального тока силовых транзисторов и теоритически может достигать 1500 Вт. Однако это только ТЕОРИТИЧЕСКИ , исходя из того, что к трансформатору прилагается 155 В переменного напряжения, а максимальный ток STP10NK60Z достигает 10А. На практике же во всех даташитах указанно снижение максимального тока в зависимости от температуры кристалла транзистора и для транзистора STP10NK60Z максимальный ток составляет 10 А при температуре кристалла 25 град Цельсия. При температуре кристалла в 100 град Цельсия максимальный ток уже составляет 5,7 А и речь идет именно о температуре кристалла, а не теплоотводящего фланца и уж тем более о температуре радиатора.
Следовательно максимальную мощность следует выбирать исходя из максвимального тока транзистора деленного на 3, если это блок питания для усилителя мощности и деленного на 4, если это блок питания для постоянной нагрузки, например ламп накаливания.
Учитывая сказанное выше получаем, что для усилителя мощности можно получить импульсный блок питания мощностью 10 / 3 = 3,3А , 3,3А х 155В = 511Вт . Для постоянной нагрузки получаем блок питания 10 / 4 = 2,5 А , 2,5 А х 155В = 387Вт . И в том и в другом случае используется 100% КПД, чего в природе не бывает . Кроме этого, если исходить из того, что 1 мкФ емкости первичного питания на 1 Вт мощности нагрузки, то нам потребуется конденсатор, или конденсаторы емкостью 1500 мкФ, а такую емкость заряжать уже нужно через системы софт-старта.
Импульсный блок питания с защитой от перегрезки и софтстартом по вторичному питанию представлен на следующей схеме:

Прежде всего в данном блоке питания присутствует защита от перегрузки, выполненная на трансформаторе тока. Подробности о расчете трансформатора тока можно почитать ЗДЕСЬ. Однако в подавляющем большинстве случаев вполне достаточно ферритового кольца диаметром 12. 16 мм, на котором в два провода мотается порядка 60. 80 витков. Диаметр 0,1. 0,15 мм. Затем начало одной обмотки осединяется с концов второй. Это и есть вторичная обмотка. Первичная обмотка содержит один-два, иногда удобней полтора витка.
Так же в схеме уменьшены номиналы резистор R4 и R6, чтобы расширить диапазон питающего первичного напряжения (180. 240В). Чтобы не перегружать установленный в микросхему стабилитрон в схеме имеется отдельный стабилитрон мощностью 1,3 Вт на 15 В.
Кроме этого в блок питания введен софт-старт для вторичного питания, что позволило увеличить емкости фильтров вторичного питания до 1000 мкФ при выходном напряжении ±80 В. Без этой системы блок питания входил в защиту в момент включения. Принцип действия защиты основан на работе IR2153 на повышенной частоте в момент включения. Это вызывает потери в трансформаторе и он не способен отдать в нагрузку максимальную мощность. Как только началась генерация через делитель R8-R9 напряжение, подаваемое на трансформатор попадает на детектор VD5 и VD7 и начинается зарядка конденсатора С7. Как только напряжение станет досточным для открытия VT1 к частотозадающей цепочки микросхемы подключается С3 и микросхема выходит на рабочую частоту.
Так же введены дополнительные индуктивности по первичному и вторичному напряжениям. Индуктивность по первичному питанию уменьшает помехи, создаваемые блоком питания и уходящие в сеть 220В, а по вторичному — снижают ВЧ пульсации на нагрузке.
В данном варианте имеется еще два дополнительных вторичных питания. Первое предназначено для запитки компьтерного двенадцативольтового куллера, а второе — для питания предварительных каскадов усилителя мощности.
Еще один подвариант схемы — импульсный блок питания с однополярным выходным напряжением:

Разумеется, что вторичная обмотка расчитывает на то напряжение, которое необходимо. Блок питания можно запаять на той же плате не монтируюя элементы, которых на схеме нет.

Следующий вариант импульсного блока питания способен отдать в нагрузку порядка 1500 Вт и содержит системы мягкого старта как по первичному питанию, так и по вторичному, имеет защиту от перегрузки и напряжение для куллера принудительного охлаждения. Проблема управления мощными силовыми транзисторами решена использованием эмиттерных повторителей на транзистора VT1 и VT2, которые разряжают емкость затворов мощных транзисторов через себя:

Подобное форсирование закрытия силовых транзисторов позволяет использовать довольно мощные экземпляры, такие как IRFPS37N50A, SPW35N60C3, не говоря уже о IRFP360 и IRFP460.
В момент включения напряжение на диодный мост первичного питания подается через резистор R1, поскольку контакты реле К1 разомкнуты. Далее напряжение, через R5 подается на микросхему и через R11 и R12 на вывод обмотки реле. Однако напряжение увеличивается постепенно — С10 достаточно большой емкости. Со второй обмотки реле напряжение поступает на стабилитрон и тиристор VS2. Как только напряжение достигнет 13 В его уже будет достаточно, чтобы пройдя 12-ти вольтовый стабилитрон открыть VS2. Тут следует напомнить, что IR2155 стартует при напряжении питания примерно в 9 В, следовательно на момент открытитя VS2 через IR2155 уже будет генерировать управляющие импульсы, только в первичную обмотку они будут попадать через резистор R17 и конденсатор С14, поскольку вторая группа контактов реле К1 тоже разомкнута. Это существенно ограничит ток заряда конденсаторов фильтров вторичного питания. Как только тиристор VS2 откроется на обмотку реле будет подано напряжение и обе контактные группы замкнуться. Первая зашунтирует токоограничиваюй резистор R1, а вторая — R17 и С14.
На силовом трансформаторе имеет служебная обмотка и выпрямитель на диодах VD10 и VD11 с которых и будет питаться реле, а так же дополнительная подпитка микросхемы. R14 служит для ограничения тока вентилятора принудительного охлаждения.
Используемые тиристоры VS1 и VS2 — MCR100-8 или аналогичные в корпусе ТО-92
Ну и под занавес этой страницы еще одна схема все на той же IR2155, но на этот раз она будет выполнять роль стабилизатора напряжения:

Последней авторской схемой с использованием IR2155 будет схема автомобильно преобразователя напряжения в которой IR2155 будет выполнять роль управляющего элемена преобразователя со средней точкой. В данной схеме драйвер верхнего плеча подключен к напряжению питания микросхемы и общем проводу, что позволяет ему управлять транзистором VT6:

Как и в предудущем варианте закрытие силовых транзисторов производится биполярами VT4 и VT5. Схема оснащена софтстартом вторичного напряжения на VT1. Старт производится от бортовой сети автомобиля а дальше питание осуществляется стабилизированным напряжением 15 В вормируемым диодами VD8, VD9, резистором R10 и стабилитроном VD6.
В данной схеме есть еще один довольно любопытный элемент — tC. Это защита от перегрева радиатора, которую можно использовать практически с любыми преобразователями. Однозначного названия найти не удалось, в простонародье это тепловой предохранитель самовостанавливающийся, в прайсах имеет обычно обозначение KSD301. Используется во многих бытовых электроприборах в качестве защитного или регулирующего температуру элемента, поскольку выпускаются с различной температурой срабатывания. Выглядит этот предохранитель так:

Как только температура радиатора достигнет предела отключения предохранителя управляющее напряжение с точки REM будет снято и преобразователь выключится. После снижение температуры на 5-10 градусов предохранитель востановится и подаст управляющее напряжение и преобразователь снова запустится. Этот же термопредохранитель, ну или термореле можно использовать и в сетевых блоках питания контролируя температуру радиатора и отключая питание, желательно низковольтное, идущее на микросхему — термореле так дольше проработает. Купить KSD301 можно ЗДЕСЬ.
VD4, VD5 — быстрые диоды из серии SF16, HER106 и т.д.
В схему можно ввести защиту от перегрузку, но во время ее разработки основной упор делался на миниатюризацию — даже узел софтстарта был под большим вопросом.
Изготовление моточных деталей и печатные платы описаны на следующих страницах статьи.

Ну и под занавес несколько схем импульсных блоков питания, найденых в интернете.
Схема №6 взята с сайта «ПАЯЛЬНИК»:

Защита организована на падении напряжении на резисторах R10-R11, однако она отслеживает ток протекающий только через транзитор VT4. В принципе ни чего страшного но все же желательно следить за обоими транзиторами. Как было сказанно выше большая емкость вольтодабавки смысла не имеет и автор использовал конденсатор на 0,68 мФ (С7).

Следующая схема сетевого преобразователя примечательна тем, что на силовом трансформаторе имеется дополнительная обмотка дя питания самой микросхемы IR2153. Так же введена индуктивность L3, уменьшающая ударные процессы в трансформаторе:

В следующем блоке питания на самотактируемом драйвере IR2153 емкость вольтодобавочного конденсатора сведена до минимальной достаточности 0,22 мкф (С10). Питание микросхемы осуществляется с искуственной средней точки силового трансформатора, что не принципиально. Защиты от перегрузки нет, форма подаваемого в силовой трансформатор напряжения немного корретируется индуктивностью L1:

Подбирая схемы для этой статьи попалась и вот такая. Идея заключается в использовании двух IR2153 в мостовом преобразователе. Идея автора вполне понятна — выход RS триггера подается на вход Ct и по логике на выходах ведомой микросхемы должны образоваться управляющие импульсы противоположные по фазе.
Идея заинтргировала и был проден следственный эксперимент на тему проверки работоспособности. Получить устойчивые управляющие импульсы на выходах IC2 не удалось — либо работал верхний драйвер, либо нижний. Кроме этого сдивагалсь фаза пауза DEAD TIME, на одной микросхеме отностительно другой, что существенно снизит КПД и от идеи были вынуждены отказаться.

Отличительная черта следующего блока питания на IR2153 заключается в том, что если он и будет работать, то работа эта сродни пороховой бочке. Прежде всего бросилась в глаза дополнительная обмотка на силовом трансформаторе для питания самой IR2153. Однако после диодов D3 и D6 нет токоограничивающего резистора, а это означает, что пятнадцативольтовый стабилитрон, находящийся внутри микросхемы будет ОЧЕНЬ сильно нагружен. Что произойдет при его перегреве и тепловом пробое можно только гадать.
Защита от перегрузки на VT3 шунтирует время задающий конденсатор С13, что вполне приемелемо.

Эта схема импульсного блока питания способна развивать довольно большую мощность, поскольку после выходного каскада микросхемы установлены дополнительные эмиттерные повторители на биполярных транзисторах которые собственно управляют затворами силовых транзисторов. В этом варианте максимальная мощность преобразователя уже будет зависеть от максимального тока биполярных транзисторов и максимального тока силовых полевиков. Поскольку выросло потребление на переключение силовых транзисторов емкость конденсатора вольтодобавки увеличина до 2,2 мкФ.

Последний приемлемый вариант схемы истоника питания на IR2153 не представляет собой ни чего уникального. Правда автор зачем то уж слишком уменьшил сопротивление резисторов в затворах силовых транзисторов и установил стабилитроны D2 и D3, назначение которых весьма не понятно. Кроме этого емкость С11 слишком мала, хотя возможно речь идет о резонансном преобразователе.

Есть еще один вариант импульсного блока питания с использованием IR2155 и именно для управления мостовым преобразвателем. Но там микросхема управляет силовыми транзисторами через дополнительный драйвер и согласующий трансформатор и речь идет об индукционной плавке металлов, поэтому этот вариант заслуживает отдельной страницы, а всем кто понял хотя бы половину из прочитанного стоит переходить на страницу с ПЕЧАТНЫМИ ПЛАТАМИ.

ВИДЕОИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА БАЗЕ IR2153 ИЛИ IR2155

Несколько слов об изготовлении импульсных трансформаторов:

Как определить количество витков не зная марку феррита:

Несколько ньансов при сборке блока питания на IR2153:

Последним будет ролик о том как сделать блок питания на IR2155, причем со стабилизацией выходного напряжения. В ролике подробно расписано каким образом производится стабилизация, даны варианты организации стабилизации выходного напряжения или тока.

Термоскотч я покупал на Алиэкспресс, если конкретно, то продавец указан тут.

Источник

Adblock
detector