Меню

Искровой генератор что это такое

Большая Энциклопедия Нефти и Газа

Искровой генератор

Искровые генераторы , в которых используется колебательный разряд батареи конденсаторов через катушку самоиндукции; при этом цепь замыкается искрой, появляющейся на остриях разрядника, когда зарядное напряжение переходит некоторый предел. [1]

Классический искровой генератор состоит из цепи таких звеньев замедления ( фиг. Схемы подсветки составляются из двух одинаковых емкостей С С и апериодически демпфируются гасящим сопротивлением RD — Цепь подсветки монтируется таким образом, чтобы она не обладала индуктивностью. Величина пробойного напряжения равна зарядному. С помощью L и С, а также подбором пробойного напряжения задается временной интервал r Ty14jv TT ivrTo L1 между искровыми разрядами. [2]

Искровой генератор высокочастотных колебаний , применявшийся на первых порах в радиотелеграфии, не позволял перейти к радиотелефонии Как уже отмечалось, для этого нужен был источник незатухающих высокочастотных колебаний. В качестве такого источника в первой радиотелефонной передаче был использован высокочастотный дуговой генератор. [3]

Постройка искрового генератора на мощность выше 35 — 40 кет нерациональна. Внешний вид искрового 20-квт генератора для поверхностной закалки производства фирмы Wan Norman приведен на фиг. [4]

Активация искрового генератора происходит с помощью меха: нической ударной волны. Получение отдельных искровых разрядов, так же как и создание искровых генераторов, трудностей не представляет. Для обеспечения хорошей работы генератора фронт ударной волны должен быть плоским. [5]

Дуговой или искровой генератор . [6]

Промышленность выпускает искровой генератор ИГ-3 , в основу которого положена схема Райского. На рис. 51 показан внешний вид и схема генератора ИГ-3. По сравнению с принципиальной схемой в нее внесен ряд изменений. [8]

Промышленность выпускает искровой генератор ИГ-3 , в основу которого положена схема Райского. Он мало отличается от выпускавшейся ранее модели искрового генератора ИГ-2. [10]

Осциллятор представляет собой маломощный искровой генератор высокочастотных затухающих колебаний . [11]

Принцип действия искровых генераторов основан на возникновении высокочастотных колебаний при искровом разряде. Питание генераторов может осуществляться от источника постоянного тока или переменного с частотой 50 Гц через повышающий трансформатор. Простейшая схема искрового генератора представлена на рис. 7 — 19 а. Индуктор нагревательной установки включен непосредственно в резонансный контур. [13]

Основным элементом искрового генератора , предложенного Кранцем и Шардином, является описанная Махом [158] схема замедления ( фиг. [14]

Источник

Опасное развлечение: простой для повторения генератор высокого напряжения

Добрый день, уважаемые хабровчане.
Этот пост будет немного необычным.
В нём я расскажу, как сделать простой и достаточно мощный генератор высокого напряжения (280 000 вольт). За основу я взял схему Генератора Маркса. Особенность моей схемы в том, что я пересчитал её под доступные и недорогие детали. К тому же сама схема проста для повторения (у меня на её сборку ушло 15 минут), не требует настройки и запускается с первого раза. На мой взгляд намного проще чем трансформатор Теслы или умножитель напряжения Кокрофта-Уолтона.

Принцип работы

Сразу после включения начинают заряжаться конденсаторы. В моём случае до 35 киловольт. Как только напряжение достигнет порога пробоя одного из разрядников, конденсаторы через разрядник соединятся последовательно, что приведёт к удвоению напряжения на конденсаторах, подсоединённых к этому разряднику. Из-за этого практически мгновенно срабатывают остальные разрядники, и напряжение на конденсаторах складывается. Я использовал 12 ступеней, то есть напряжение должно умножиться на 12 (12 х 35 = 420). 420 киловольт — это почти полуметровые разряды. Но на практике, с учетом всех потерь, получились разряды длиной 28 см. Потери были вследствие коронных разрядов.

О деталях:

Сама схема простая, состоит из конденсаторов, резисторов и разрядников. Ещё потребуется источник питания. Так как все детали высоковольтные, возникает вопрос, где же их достать? Теперь обо всём по порядку:

1 — резисторы

Нужны резисторы на 100 кОм, 5 ватт, 50 000 вольт.
Я пробовал много заводских резисторов, но ни один не выдерживал такого напряжения — дуга пробивала поверх корпуса и ничего не работало. Тщательное загугливание дало неожиданный ответ: мастера, которые собирали генератор Маркса на напряжение более 100 000 вольт, использовали сложные жидкостные резисторы генератор Маркса на жидкостных резисторах, или же использовали очень много ступеней. Я захотел чего-то проще и сделал резисторы из дерева.

Отломал на улице две ровных веточки сырого древа (сухое ток не проводит) и включил первую ветку вместо группы резисторов справа от конденсаторов, вторую ветку вместо группы резисторов слева от конденсаторов. Получилось две веточки с множеством выводов через равные расстояния. Выводы я делал путём наматывания оголённого провода поверх веток. Как показывает опыт, такие резисторы выдерживают напряжение в десятки мегавольт (10 000 000 вольт)

2 — конденсаторы

Тут всё проще. Я взял конденсаторы, которые были самыми дешевыми на радио рынке — К15-4, 470 пкф, 30 кВ, (они же гриншиты). Их использовали в ламповых телевизорах, поэтому сейчас их можно купить на разборке или попросить бесплатно. Напряжение в 35 киловольт они выдерживают хорошо, ни один не пробило.

3 — источник питания

Собирать отдельную схему для питания моего генератора Маркса у меня просто не поднялась рука. Потому, что на днях мне соседка отдала старенький телевизор «Электрон ТЦ-451». На аноде кинескопа в цветных телевизорах используется постоянное напряжение около 27 000 вольт. Я отсоединил высоковольтный провод (присоску) с анода кинескопа и решил проверить, какая дуга получится от этого напряжения.

Вдоволь наигравшись с дугой, пришел к выводу, что схема в телевизоре достаточно стабильная, легко выдерживает перегрузки и в случае короткого замыкания срабатывает защита и ничего не сгорает. Схема в телевизоре имеет запас по мощности и мне удалось разогнать её с 27 до 35 киловольт. Для этого я покрутил подстроичник R2 в модуле питания телевизора так, что питание в строчной развертке поднялось с 125 до 150 вольт, что в свою очередь привело к повышению анодного напряжения до 35 киловольт. При попытке ещё больше увеличить напряжение, пробивает транзистор КТ838А в строчной развёртке телевизора, поэтому нужно не переборщить.

Процесс сборки

С помощью медной проволоки я прикрутил конденсаторы к веткам дерева. Между конденсаторами должно быть расстояние 37 мм, иначе может произойти нежелательный пробой. Свободные концы проволоки я загнул так, чтобы между ними получилось 30 мм — это будут разрядники.

Лучше один раз увидеть, чем 100 раз услышать. Смотрите видео, где я подробно показал процесс сборки и работу генератора:

Техника безопасности

Нужно соблюдать особую осторожность, так как схема работает на постоянном напряжении и разряд даже от одного конденсатора будет скорее всего смертельным. При включении схемы нужно находиться на достаточном удалении потому, что электричество пробивает через воздух 20 см и даже более. После каждого выключения нужно обязательно разряжать все конденсаторы (даже те, что стоят в телевизоре) хорошо заземлённым проводом.

Лучше из комнаты, где будут проводиться опыты, убрать всю электронику. Разряды создают мощные электромагнитные импульсы. Телефон, клавиатура и монитор, которые показаны у меня в видео, вышли из строя и ремонту больше не подлежат! Даже в соседней комнате у меня выключился газовый котёл.

Нужно беречь слух. Шум от разрядов похож на выстрелы, потом от него звенит в ушах.

Интересные наблюдения

Первое, что ощущаешь при включении — то, как электризуется воздух в комнате. Напряженность электрического поля настолько высока, что чувствуется каждым волоском тела.

Хорошо заметен коронный разряд. Красивое голубоватое свечение вокруг деталей и проводов.
Постоянно слегка бьет током, иногда даже не поймёшь от чего: прикоснулся к двери — проскочила искра, захотел взять ножницы — стрельнуло от ножниц. В темноте заметил, что искры проскакивают между разными металлическими предметами, не связанными с генератором: в дипломате с инструментом проскакивали искорки между отвёртками, плоскогубцами, паяльником.

Лампочки загораются сами по себе, без проводов.

Озоном пахнет по всему дому, как после грозы.

Заключение

Все детали обойдутся где-то в 50 грн (5$), это старый телевизор и конденсаторы. Сейчас я разрабатываю принципиально новую схему, с целью без особых затрат получать метровые разряды. Вы спросите: какое применение данной схемы? Отвечу, что применения есть, но обсуждать их нужно уже в другой теме.

На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением.

Источник

Смертельно опасный генератор Маркса – что это такое?

Это устройство изобретено Эрвином Марксом, немецким инженером, в далеком 1924 году. Первый экземпляр был изготовлен в 1926. И хотя более устоявшееся название механизма – генератор Маркса, его так же называют генератором Маркса-Аркадьева. Это связано с тем, что десятью годами раньше В.К.Аркадьевым был изготовлен «генератор молний» — устройство, принцип работы которого очень напоминает принципы работы генератора Маркса.

Попробуем рассмотреть это устройство поподробнее. Оно применяется для получения высоковольтных импульсных разрядов. Основными составляющими частями являются конденсаторы, последовательно соединенные в цепь, и заряжаемыми от источника по отдельности. Результатом такого действия будет разряд (точнее — искровой разряд – или молния) с напряжением, намного превосходящим полученное от заряжающего источника.

Читайте также:  Схема генератора капанадзе бтг

С помощью таких генераторов возможно получение разряда с напряжением от десяти КВ до сотен МВ. Энергия таких импульсов может измерятся десяткам МДж!

Где же можно применять такие установки? В первую очередь – для научных исследований, например в свое время их применяли для исследований в ядерной области (с их помощью моделировали реакции), а так же для исследований плазмы.

Поскольку генераторы Маркса используют устройства, накапливающие энергию (конденсаторы), а также выделяют при работе озон и сильное ультрафиолетовое излучение, то следует упомянуть, что неподготовленному человеку не следует даже пытаться конструировать подобное, так как это может быть смертельно опасно.

Отдельно следует упомянуть о возможности использовании изобретения Э.Маркса как оружия. Достоверно известно о нескольких башнях, с генераторами Макса-Аркадьева в Подмосковье, у города Истра. Там в семидесятых годах прошлого века создавался полигон для испытаний нового супероружия, использовавшего мощнейшие электромагнитные импульсы.

«Невероятные Механизмы» обязательно напишет об этом уникальном полигоне в самое ближайшее время.

Если вам понравился материал, пожалуйста, ставьте лайки и подписывайтесь на канал. Это не сложно и бесплатно, но очень важно для развития «НМ».

Источник

Высоковольтные генераторы напряжения с емкостными накопителями энергии

Генераторы высокого напряжения малой мощности широко используют в дефектоскопии, для питания портативных ускорителей заряженных частиц, рентгеновских и электронно-лучевых трубок, фотоэлектронных умножителей, детекторов ионизирующих излучений. Кроме этого, их также применяют для электроимпульсного разрушения твердых тел, получения ультрадисперсных порошков, синтеза новых материалов, в качестве искровых те-чеискателей, для запуска газоразрядных источников света, при электроразрядной диагностике материалов и изделий, получении газоразрядных фотографий по методу С. Д. Кирлиан, тестировании качества высоковольтной изоляции. В быту подобные устройства находят применение в качестве источников питания для электронных уловителей ультрадисперсной и радиоактивной пыли, систем электронного зажигания, для электроэффлювиаль-ных люстр (люстр А. Л. Чижевского), аэроионизаторов, устройств медицинского назначения (аппараты Д’Арсонваля, франклизации, ультратонотерапии), газовых зажигалок, электроизгородей, элек-трошокеров и т.д.

Условно к генераторам высокого напряжения нами отнесены устройства, вырабатывающие напряжение выше 1 кВ.

Генератор высоковольтных импульсов с использованием резонансного трансформатора (рис. 11.1) выполнен по классической схеме на газовом разряднике РБ-3.

Конденсатор С2 заряжается пульсирующим напряжением через диод VD1 и резистор R1 до напряжения пробоя газового разрядника. В результате пробоя газового промежутка разрядника конденсатор разряжается на первичную обмотку трансформатора, после чего процесс повторяется. В итоге на выходе трансформатора Т1 формируются затухающие высоковольтные импульсы амплитудой до 3. 20 кВ.

Для защиты выходной обмотки трансформатора от перенапряжения параллельно ей подключен разрядник, выполненный в виде электродов с регулируемым воздушным зазором.

Рис. 11.1. Схема генератора высоковольтных импульсов с использованием газового разрядника.

Рис. 11.2. Схема генератора высоковольтных импульсов с удвоением напряжения.

Трансформатор Т1 генератора импульсов (рис. 11.1) выполнен на незамкнутом ферритовом сердечнике М400НН-3 диаметром 8 и длиной 100 мм. Первичная (низковольтная) обмотка трансформатора содержит 20 витков провода МГШВ 0,75 мм с шагом намотки 5. 6 мм. Вторичная обмотка содержит 2400 витков рядовой намотки провода ПЭВ-2 0,04 мм. Первичная обмотка намотана поверх вторичной через политетрафторэти-леновую (фторопластовую) прокладку 2×0,05 мм. Вторичная обмотка трансформатора должна быть надежно изолирована от первичной.

Вариант выполнения генератора высоковольтных импульсов с использованием резонансного трансформатора показан на рис. 11.2. В этой схеме генератора имеется гальваническая развязка от питающей сети. Сетевое напряжение поступает на промежуточный (повышающий) трансформатор Т1. Снимаемое со вторичной обмотки сетевого трансформатора напряжение поступает на выпрямитель, работающий по схеме удвоения напряжения.

В результате работы такого выпрямителя на верхней по схеме обкладке конденсатора С2 относительно нулевого провода появляется положительное напряжение, равное квадратный корень из 2Uii, где Uii — напряжение на вторичной обмотке силового трансформатора.

На конденсаторе С1 формируется соответствующее напряжение противоположного знака. В результате напряжение на обкладках конденсатора СЗ будет равно 2 квадратных кореня из 2Uii.

Скорость заряда конденсаторов С1 и С2 (С1=С2) определяется величиной сопротивления R1.

Когда напряжение на обкладках конденсатора СЗ сравняется с напряжением пробоя газового разрядника FV1, произойдет пробой его газового промежутка, конденсатор СЗ и, соответственно, конденсаторы С1 и С2 разрядятся, во вторичной обмотке трансформатора Т2 возникнут периодические затухающие колебания. После разряда конденсаторов и отключения разрядника процесс заряда и последующего разряда конденсаторов на первичную обмотку трансформатора 12 повторится снова.

Высоковольтный генератор, используемый для получения фотографий в газовом разряде, а также для сбора ультрадис-персной и радиоактивной пыли (рис. 11.3) состоит из удвоителя напряжения, релаксационного генератора импульсов и повышающего резонансного трансформатора.

Удвоитель напряжения выполнен на диодах VD1, VD2 и конденсаторах С1, С2. Зарядную цепочку образуют конденсаторы С1 — СЗ и резистор R1. Параллельно конденсаторам С1 — СЗ включен газовый разрядник на 350 В с последовательно соединенной первичной обмоткой повышающего трансформатора Т1.

Как только уровень постоянного напряжения на конденсаторах С1 — СЗ превысит напряжение пробоя разрядника, конденсаторы разрядятся через обмотку повышающего трансформатора и в результате образуется высоковольтный импульс. Элементы схемы подобраны так, что частота формирования импульсов около 1 Гц. Конденсатор С4 предназначен для защиты выходного зажима прибора от попадания сетевого напряжения.

Рис. 11.3. Схема генератора импульсов высокого напряжения с использованием газового разрядника или динисторов.

Выходное напряжение устройства целиком определяется свойствами используемого трансформатора и может достигать 15 кВ. Высоковольтный трансформатор на выходное напряжение порядка 10 кВ выполнен на диэлектрической трубке с внешним диаметром 8 и длиной 150 мм, внутри расположен медный электрод диаметром 1,5 мм. Вторичная обмотка содержит 3. 4 тысячи витков провода ПЭЛШО 0,12, намотанных виток к витку в 10. 13 слоев (ширина намотки 70 мм) и пропитанных клеем БФ-2 с межслойной изоляцией из политетрафторэтилена. Первичная обмотка содержит 20 витков провода ПЭВ 0,75, пропущенного через кембрик из поливинилхлорида.,

В качестве такого трансформатора можно также применить модифицированный выходной трансформатор строчной развертки телевизора; трансформаторы электронных зажигалок, ламп-вспышек, катушек зажигания и др.

Газовый разрядник Р-350 может быть заменен переключаемой цепочкой динисторов типа КН102 (рис. 11.3, справа), что позволит ступенчато изменять выходное напряжение. Для равномерного распределения напряжения на динисторах параллельно к каждому из них подключены резисторы одинакового номинала сопротивлением 300. 510 кОм.

Вариант схемы высоковольтного генератора с использованием в качестве порогово-коммутирующего элемента газонаполненного прибора — тиратрона показан на рис. 11.4.

Рис. 11.4. Схема генератора импульсов высокого напряжения с использованием тиратрона.

Сетевое напряжение выпрямляется диодом VD1. Выпрямленное напряжение сглаживается конденсатором С1 и подается на зарядную цепочку R1, С2. Как только напряжение на конденсаторе С2 достигнет напряжения зажигания тиратрона VL1, он вспыхивает. Конденсатор С2 разряжается через первичную обмотку трансформатора Т1, тиратрон гаснет, конденсатор вновь начинает заряжаться и т.д.

В качестве трансформатора Т1 использована автомобильная катушка зажигания.

Вместо тиратрона VL1 МТХ-90 можно включить один или несколько динисторов типа КН102. Амплитуду высокого напряжения можно регулировать количеством включенных динисторов.

Конструкция высоковольтного преобразователя с использованием тиратронного коммутатора описана в работе. Отметим, что для разряда конденсатора могут быть использованы и другие виды газонаполненных приборов.

Более перспективно применение в современных генераторах высокого напряжения полупроводниковых переключающих приборов. Их достоинства отчетливо выражены: это высокая повторяемость параметров, меньшая стоимость и габариты, высокая надежность.

Ниже будут рассмотрены генераторы высоковольтных импульсов с использованием полупроводниковых коммутирующих приборов (динисторов, тиристоров, биполярных и полевых транзисторов).

Вполне равноценным, но слаботочным аналогом газовых разрядников являются динисторы.

На рис. 11.5 показана электрическая схема генератора, выполненного на динисторах. По своей структуре генератор полностью подобен описанным ранее (рис. 11.1, 11.4). Основное отличие заключается в замене газового разрядника цепочкой последовательно включенных динисторов.

Рис. 11.5. Схема генератора высоковольтных импульсов на динисторах.

Рис. 11.6. Схема генератора высоковольтных импульсов с мостовым выпрямителем.

Следует отметить, что КПД такого аналога и коммутируемые токи заметно ниже, чем у прототипа, однако динисторы более доступны и более долговечны.

Несколько усложненный вариант генератора высоковольтных импульсов представлен на рис. 11.6. Сетевое напряжение подается на мостовой выпрямитель на диодах VD1 — VD4. Выпрямленное напряжение сглаживается конденсатором С1. На этом конденсаторе образуется постоянное напряжение около 300 В, которое используется для питания релаксационного генератора, составленного из элементов R3, С2, VD5 и VD6. Его нагрузкой является первичная обмотка трансформатора Т1. Со вторичной обмотки снимаются импульсы амплитудой примерно 5 кВ и частотой следования до 800 Гц.

Цепочка динисторов должна быть рассчитана на напряжение включения около 200 В. Здесь можно использовать динисторы типа КН102 либо Д228. При этом следует учитывать, что напряжение включения динисторов типа КН102А, Д228А составляет 20 В; КН102Б, Д228Б — 28 В; КН102В, Д228В — 40 В; КН102Г, Д228Г — 56 В; КН102Д, Д228Д — 80 В; КН102Е — 75 В; КН102Ж, Д228Ж — 120 В; КН102И, Д228И — 150 В.

В качестве трансформатора Т1 в приведенных выше устройствах может быть использован доработанный строчный трансформатор от черно-белого телевизора. Его высоковольтную обмотку оставляют, остальные удаляют и вместо них наматывают низковольтную (первичную) обмотку — 15. 30 витков провода ПЭВ диаметром 0,5. 0,8 мм.

Читайте также:  Генератор дизельный aksa apd 200c

При выборе числа витков первичной обмотки следует учитывать количество витков вторичной обмотки. Необходимо также иметь в виду, что величина выходного напряжения генератора высоковольтных импульсов в большей степени зависит от настройки контуров трансформатора в резонанс, нежели от соотношения числа витков обмоток.

Характеристики некоторых видов телевизионных трансформаторов строчной развертки приведены в таблице 11.1.

Таблица 11.1. Параметры высоковольтных обмоток унифицированных телевизионных трансформаторов строчной развертки.

Рис. 11.7. Электрическая схема генератора высоковольтных импульсов.

На рис. 11.7 представлена опубликованная на одном из сайтов схема двухступенчатого генератора высоковольтных импульсов, в котором в качестве элемента коммутации использован тиристор. В свою очередь, в качестве порогового элемента, определяющего частоту следования высоковольтных импульсов и запускающего тиристор, выбран газоразрядный прибор — неоновая лампа (цепочка HL1, HL2).

При подаче напряжения питания генератор импульсов, выполненный на основе транзистора VT1 (2N2219A — КТ630Г), вырабатывает напряжение порядка 150 В. Это напряжение выпрямляется диодом VD1 и заряжает конденсатор С2.

После того как напряжение на конденсаторе С2 превысит напряжение зажигания неоновых ламп HL1, HL2, через токоограничивающий резистор R2 произойдет разряд конденсатора на управляющий электрод тиристора VS1, тиристор отопрется. Разрядный ток конденсатора С2 создаст электрические колебания в первичной обмотке трансформатора Т2.

Напряжение включения тиристора можно регулировать, подбирая неоновые лампы с разным напряжением зажигания. Ступенчато изменять величину напряжения включения тиристора можно переключением числа последовательно включенных неоновых ламп (или заменяющих их динисторов).

Рис. 11.8. Диаграмма электрических процессов на электродах полупроводниковых приборов (к рис. 11.7).

Диаграмма напряжений на базе транзистора VT1 и на аноде тиристора показана на рис. 11.8. Как следует из представленных диаграмм, импульсы блокинг-генератора имеют длительность примерно 8 мс. Заряд конденсатора С2 происходит ступенчато-экспоненциально в соответствии с действием импульсов, снимаемых со вторичной обмотки трансформатора Т1.

На выходе генератора формируются импульсы напряжением примерно 4,5 кВ. В качестве трансформатора Т1 использован выходной трансформатор для усилителей низкой частоты. В качестве

высоковольтного трансформатора Т2 использован трансформатор от фотовспышки или переработанный (см. выше) телевизионный трансформатор строчной развертки.

Схема еще одного варианта генератора с использованием неоновой лампы в качестве порогового элемента приведена на рис. 11.9.

Рис. 11.9. Электрическая схема генератора с пороговым элементом на неоновой лампе.

Релаксационный генератор в нем выполнен на элементах R1, VD1, С1, HL1, VS1. Он работает при положительных лолупе-риодах сетевого напряжения, когда конденсатор С1 заряжается до напряжения включения порогового элемента на неоновой лампе HL1 и тиристоре VS1. Диод VD2 демпфирует импульсы самоиндукции первичной обмотки повышающего трансформатора Т1 и позволяет повысить выходное напряжение генератора. Выходное напряжение достигает 9 кВ. Неоновая лампа одновременно является сигнализатором включения устройства в сеть.

Высоковольтный трансформатор намотан на отрезке стержня диаметром 8 и длиной 60 мм из феррита М400НН. Вначале размещают первичную обмотку — 30 витков провода ПЭЛШО 0,38, а затем вторичную — 5500 витков ПЭЛШО 0,05 или большего диаметра. Между обмотками и через каждые 800. 1000 витков вторичной обмотки прокладывают слой изоляции из поливинилхлоридной изоляционной ленты.

В генераторе возможно введение дискретной многоступенчатой регулировки выходного напряжения переключением в последовательной цепи неоновых ламп либо динисторов (рис. 11.10). В первом варианте обеспечиваются две ступени регулирования, во втором — до десяти и более (при использовании динисторов КН102А с напряжением включения 20 В).

Рис. 11.10. Электрическая схема порогового элемента.

Рис. 11.11. Электрическая схема генератора высокого напряжения с пороговым элементом на диоде.

Простой генератор высокого напряжения (рис. 11.11) позволяет получить на выходе импульсы амплитудой до 10 кВ.

Переключение управляющего элемента устройства происходит с частотой 50 Гц (на одной полуволне сетевого напряжения). В качестве порогового элемента использован диод VD1 Д219А (Д220, Д223), работающий при обратном смещении в режиме лавинного пробоя.

При превышении на полупроводниковом переходе диода напряжения лавинного пробоя происходит переход диода в проводящее состояние. Напряжение с заряженного конденсатора С2 подается на управляющий электрод тиристора VS1. После включения тиристора конденсатор С2 разряжается на обмотку трансформатора Т1.

Трансформатор Т1 не имеет сердечника. Он выполнен на катушке диаметром 8 мм из полиметилметакрилата или политет-рахлорэтилена и содержит три разнесенных секции шириной по

9 мм. Повышающая обмотка содержит 3×1000 витков, намотанных проводом ПЭТФ, ПЭВ-2 0,12 мм. После намотки обмотка должна быть пропитана парафином. Поверх парафина накладывается 2 — 3 слоя изоляции, после чего наматывают первичную обмотку — 3×10 витков провода ПЭВ-2 0,45 мм.

Тиристор VS1 можно заменить другим на напряжение выше 150 В. Лавинный диод можно заменить цепочкой динисторов (рис. 11.10, 11.11 внизу).

Схема маломощного переносного источника импульсов высокого напряжения с автономным питанием от одного гальванического элемента (рис. 11.12) состоит из двух генераторов. Первый построен на двух маломощных транзисторах, второй — на тиристоре и динисторе.

Рис. 11.12. Схема генератора напряжения с низковольтным питанием и тиристорно-динисторным ключевым элементом.

Каскад на транзисторах разной проводимости преобразует низковольтное постоянное напряжение в высоковольтное импульсное. Времязадающей цепочкой в этом генераторе служат элементы С1 и R1. При включении питания открывается транзистор ѴТ1, и перепад напряжения на его коллекторе открывает транзистор ѴТ2. Конденсатор С1, заряжаясь через резистор R1, уменьшает базовый ток транзистора ѴТ2 настолько, что транзистор ѴТ1 выходит из насыщения, а это приводит к закрыванию и ѴТ2. Транзисторы будут закрыты до тех пор, пока конденсатор С1 не разрядится через первичную обмотку трансформатора Т1.

Повышенное импульсное напряжение, снимаемое со вторичной обмотки трансформатора Т1, выпрямляется диодом VD1 и поступает на конденсатор С2 второго генератора с тиристором VS1 и динистором VD2. В каждый положительный полупериод

накопительный конденсатор С2 заряжается до амплитудного значения напряжения, равного напряжению переключения динистора VD2, т.е. до 56 В (номинальное импульсное отпирающее напряжение для динистора типа КН102Г).

Переход динистора в открытое состояние воздействует на цепь управления тиристора VS1, который в свою очередь тоже открывается. Конденсатор С2 разряжается через тиристор и первичную обмотку трансформатора Т2, после чего динистор и тиристор вновь закрываются и начинается очередной заряд конденсатора — цикл переключений повторяется.

Со вторичной обмотки трансформатора Т2 снимаются импульсы с амплитудой в несколько киловольт. Частота искровых разрядов равна примерно 20 Гц, но она намного меньше частоты импульсов, снимаемых со вторичной обмотки трансформатора Т1. Происходит это потому, что конденсатор С2 заряжается до напряжения переключения динистора не за один, а за несколько положительных полупериодов. Величина емкости этого конденсатора определяет мощность и длительность выходных разрядных импульсов. Безопасное для динистора и управляющего электрода тринистора среднее значение разрядного тока выбрано из расчета емкости этого конденсатора и величины импульсного напряжения, питающего каскад. Для этого емкость конденсатора С2 должна быть примерно 1 мкФ.

Трансформатор Т1 выполнен на кольцевом ферритовом магнитопроводе типа К10x6x5. Он имеет 540 витков провода ПЭВ-2 0,1 с заземленным отводом после 20-го витка. Начало его намотки присоединяется к транзистору VT2, конец — к диоду VD1. Трансформатор Т2 намотан на катушке с ферритовым или пермаллоевым сердечником диаметром 10 мм, длиной 30 мм. Катушку с внешним диаметром 30 мм и шириной 10 мм наматывают проводом ПЭВ-2 0,1 мм до полного заполнения каркаса. Перед окончанием намотки делается заземленный отвод, и последний ряд провода из 30. 40 витков наматывается виток к витку поверх изолирующего слоя лакоткани.

Трансформатор Т2 по ходу намотки необходимо пропитывать изолирующим лаком или клеем БФ-2, затем тщательно просушить.

Вместо VT1 и VT2 можно применить любые маломощные транзисторы, способные работать в импульсном режиме. Тиристор КУ101Е можно заменить на КУ101Г. Источник питания — гальванические элементы с напряжением не более 1,5 В, например, 312, 314, 316, 326, 336, 343, 373, или дисковые никель-кад-миевые аккумуляторы типа Д-0,26Д, Д-0,55С и т.п.

Тиристорный генератор высоковольтных импульсов с сетевым питанием показан на рис. 11.13.

Рис. 11.13. Электрическая схема генератора высоковольтных импульсов с емкостным накопителем энергии и коммутатором на тиристоре.

Во время положительного полупериода сетевого напряжения конденсатор С1 заряжается через резистор R1, диод VD1 и первичную обмотку трансформатора Т1. Тиристор VS1 при этом закрыт, поскольку отсутствует ток через его управляющий электрод (падение напряжения на диоде VD2 в прямом направлении мало по сравнению с напряжением, необходимым для открывания тиристора).

При отрицательном полупериоде диоды VD1 и VD2 закрываются. На катоде тиристора образуется падение напряжения относительно управляющего электрода (минус — на катоде, плюс — на управляющем электроде), в цепи управляющего электрода появляется ток, и тиристор открывается. В этот момент конденсатор С1 разряжается через первичную обмотку трансформатора. Во вторичной обмотке появляется импульс высокого напряжения. И так — каждый период сетевого напряжения.

На выходе устройства формируются двухполярные импульсы высокого напряжения (поскольку при разряде конденсатора в цепи первичной обмотки возникают затухающие колебания).

Читайте также:  Дизельное масло в бензиновом генераторе

Резистор R1 может быть составлен из трех параллельно соединенных резисторов МЛТ-2 сопротивлением по 3 кОм.

Диоды VD1 и VD2 должны быть рассчитаны на ток не менее 300 мА и обратное напряжение не ниже 400 В (VD1) и 100 Б (VD2). Конденсатор С1 типа МБМ на напряжение не ниже 400 В. Его емкость — доли-единицы мкФ — подбирают экспериментально. Тиристор VS1 типа КУ201К, КУ201Л, КУ202К — КУ202Н. Трансформатори — катушка зажигания Б2Б (на 6 В) от мотоцикла или автомобиля.

В устройстве может быть использован телевизионный трансформатор строчной развертки ТВС-110Л6, ТВС-1 ЮЛА, ТВС-110АМ.

Достаточно типичная схема генератора высоковольтных импульсов с емкостным накопителем энергии показана на рис. 11.14.

Рис. 11.14. Схема тиристорного генератора высоковольтных импульсов с емкостным накопителем энергии.

Генератор содержит гасящий конденсатор С1, диодный выпрямительный мост VD1 — VD4, тиристорный ключ VS1 и схему управления. При включении устройства заряжаются конденсаторы С2 и СЗ, тиристор VS1 пока закрыт и ток не проводит. Предельное напряжение на конденсаторе С2 ограничено стабилитроном VD5 величиной 9В. В процессе зарядки конденсатора С2 через резистор R2 напряжение на потенциометре R3 и, соответственно, на управляющем переходе тиристора VS1 возрастает до определенного значения, после чего тиристор переключается в проводящее состояние, а конденсатор СЗ через тиристор VS1 разряжается через первичную (низковольтную) обмотку трансформатора Т1, генерируя высоковольтный импульс. После этого тиристор закрывается и процесс начинается заново. Потенциометр R3 устанавливает порог срабатывания тиристора VS1.

Частота повторения импульсов составляет 100 Гц. В качестве высоковольтного трансформатора может быть использована автомобильная катушка зажигания. В этом случае выходное напряжение устройства достигнет 30. 35 кВ. Тиристорный генератор высоковольтных импульсов (рис. 11.15) управляется импульсами напряжения, снимаемого с релаксационного генератора, выполненного на динисторе VD1. Рабочая частота генератора управляющих импульсов (15. 25 Гц) определяется величиной сопротивления R2 и емкостью конденсатора С1.

Рис. 11.15. Электрическая схема тиристорного генератора высоковольтных импульсов с импульсным управлением.

Релаксационный генератор связан с тиристорным ключом через импульсный трансформатор Т1 типа МИТ-4. В качестве выходного трансформатора Т2 используется высокочастотный трансформатор от аппарата для дарсонвализации «Искра-2». Напряжение на выходе устройства может доходить до 20. 25 кВ.

На рис. 11.16 показан вариант подачи импульсов управления на тиристор VS1.

Преобразователь напряжения (рис. 11.17), разработанный в Болгарии, содержит два каскада. В первом из них нагрузкой ключевого элемента, выполненного на транзисторе ѴТ1, является обмотка трансформатора Т1. Управляющие импульсы прямоугольной формы периодически включают/выключают ключ на транзисторе ѴТ1, подключая/отключая тем самым первичную обмотку трансформатора.

Рис. 11.16. Вариант управления тиристорным коммутатором.

Рис. 11.17. Электрическая схема двухступенчатого генератора высоковольтных импульсов.

Во вторичной обмотке наводится повышенное напряжение, пропорциональное коэффициенту трансформации. Это напряжение выпрямляется диодом VD1 и заряжает конденсатор С2, который подключен к первичной (низковольтной) обмотке высоковольтного трансформатора Т2 и тиристору VS1. Управление работой тиристора осуществляется импульсами напряжения, снимаемыми с дополнительной обмотки трансформатора Т1 через цепочку элементов, корректирующих форму импульса.

В результате тиристор периодически включается/отключается. Конденсатор С2 разряжается на первичную обмотку высоковольтного трансформатора.

Генератор высоковольтных импульсов, рис. 11.18, содержит в качестве управляющего элемента генератор на основе однопереходного транзистора.

Рис. 11.18. Схема генератора высоковольтных импульсов с управляющим элементом на однопереходном транзисторе.

Сетевое напряжение выпрямляется диодным мостом VD1 — VD4. Пульсации выпрямленного напряжения сглаживает конденсатор С1, ток заряда конденсатора в момент включения устройства в сеть ограничивает резистор R1. Через резистор R4 заряжается конденсатор СЗ. Одновременно вступает в действие генератор импульсов на однопереходном транзисторе ѴТ1. Его «спусковой» конденсатор С2 заряжается через резисторы R3 и R6 от параметрического стабилизатора (балластный резистор R2 и стабилитроны VD5, VD6). Как только напряжение на конденсаторе С2 достигает определенного значения, транзистор ѴТ1 переключается, и на управляющий переход тиристора VS1 поступает открывающий импульс.

Конденсатор СЗ разряжается через тиристор VS1 на первичную обмотку трансформатора Т1. На его вторичной обмотке формируется импульс высокого напряжения. Частота следования этих импульсов определяется частотой генератора, которая, в свою очередь, зависит от параметров цепочки R3, R6 и С2. Под-строечным резистором R6 можно изменять выходное напряжение генератора примерно в 1,5 раза. При этом частота импульсов регулируется в пределах 250. 1000 Гц. Кроме того, выходное напряжение изменяется при подборе резистора R4 (в пределах от 5 до 30 кОм).

Конденсаторы желательно применять бумажные (С1 и СЗ — на номинальное напряжение не менее 400 В); на такое же напряжение должен быть рассчитан диодный мост. Вместо указанного на схеме можно использовать тиристор Т10-50 или в крайнем случае КУ202Н. Стабилитроны VD5, VD6 должны обеспечить суммарное напряжение стабилизации около 18 В.

Трансформатор изготовлен на основе ТВС-110П2 от чер-но-белых телевизоров. Все первичные обмотки удаляют и наматывают на освободившееся место 70 витков провода ПЭЛ или ПЭВ диаметром 0,5. 0,8 мм.

Электрическая схема генератора импульсов высокого напряжения, рис. 11.19, состоит из диодно-конденсаторного умножителя напряжения (диоды VD1, VD2, конденсаторы С1 — С4). На его выходе получается постоянное напряжение примерно 600 В.

Рис. 11.19. Схема генератора высоковольтных импульсов с удвоителем напряжения сети и генератором запускающих импульсов на однопереходном транзисторе.

В качестве порогового элемента устройства использован однопереходный транзистор VT1 типа КТ117А. Напряжение на одной из его баз стабилизировано параметрическим стабилизатором на стабилитроне VD3 типа КС515А (напряжение стабилизации 15 Б). Через резистор R4 осуществляется заряд конденсатора С5, и когда напряжение на управляющем электроде транзистора VT1 превысит напряжение на его базе, произойдет переключение VT1 в проводящее состояние, а конденсатор С5 разрядится на управляющий электрод тиристора VS1.

При включении тиристора цепочка конденсаторов С1 — С4, заряженных до напряжения около 600. 620 В, разряжается на низковольтную обмотку повышающего трансформатора Т1. После этого тиристор отключается, зарядно-разрядные процессы повторяются с частотой, определяемой постоянной R4C5. Резистор R2 ограничивает ток короткого замыкания при включении тиристора и одновременно является элементом зарядной цепи конденсаторов С1 — С4.

Схема преобразователя (рис. 11.20) и его упрощенного варианта (рис. 11.21) подразделяется на следующие узлы: сетевой заградительный фильтр (фильтр помех); электронный регулятор; высоковольтный трансформатор.

Рис. 11.20. Электрическая схема генератора высокого напряжения с сетевым фильтром.

Рис. 11.21. Электрическая схема генератора высокого напряжения с сетевым фильтром.

Схема на рис. 11.20 работает следующим образом. Конденсатор СЗ заряжается через диодный выпрямитель VD1 и резистор R2 до амплитудного значения напряжения сети (310 В). Это напряжение попадает через первичную обмотку трансформатора Т1 на анод тиристора VS1. По другой ветви (R1, VD2 и С2) медленно заряжается конденсатор С2. Когда в процессе его заряда достигается пробивное напряжение динистора VD4 (в пределах 25. 35 В), конденсатор С2 разряжается через управляющий электрод тиристора VS1 и открывает его.

Конденсатор СЗ практически мгновенно разряжается через открытый тиристор VS1 и первичную обмотку трансформатора Т1. Импульсный изменяющийся ток индуцирует во вторичной обмотке Т1 высокое напряжение, величина которого может превысить 10 кВ. После разряда конденсатора СЗ тиристор VS1 закрывается, и процесс повторяется.

В качестве высоковольтного трансформатора используют телевизионный трансформатор, у которого удаляют первичную обмотку. Для новой первичной обмотки используется обмоточный провод диаметром 0,8 мм. Количество витков — 25.

Для изготовления катушек индуктивности заградительного фильтра L1, L2 лучше всего подходят высокочастотные феррито-вые сердечники, например, 600НН диаметром 8 мм и длиной 20 мм, имеющие примерно по 20 витков обмоточного провода диаметром 0,6. 0,8 мм.

Рис. 11.22. Электрическая схема двухступенчатого генератора высокого напряжения с управляющим элементом на полевом транзисторе.

Двухступенчатый генератор высокого напряжения (автор — Andres Estaban de la Plaza) содержит трансформаторный генератор импульсов, выпрямитель, времязадающую RC-цепоч-ку, ключевой элемент на тиристоре (симисторе), высоковольтный резонансный трансформатор и схему управления работой тиристора (рис. 11.22).

Аналог транзистора TIP41 — КТ819А.

Низковольтный трансформаторный преобразователь напряжения с перекрестными обратными связями, собранный на транзисторах VT1 и VT2, вырабатывает импульсы с частотой повторения 850 Гц. Транзисторы VT1 и VT2 для облегчения работы при протекании больших токов установлены на радиаторах, выполненных из меди или алюминия.

Выходное напряжение, снимаемое со вторичной обмотки трансформатора Т1 низковольтного преобразователя, выпрямляется диодным мостом VD1 — VD4 и через резистор R5 заряжает конденсаторы СЗ и С4.

Управление порогом включения тиристора производится регулятором напряжения, в состав которого входит полевой транзистор ѴТЗ.

Далее работа преобразователя существенно не отличается от описанных ранее процессов: происходит периодический заряд/разряд конденсаторов на низковольтную обмотку трансформатора, генерируются затухающие электрические колебания. Выходное напряжение преобразователя при использовании на выходе в качестве повышающего трансформатора катушки зажигания от автомобиля, достигает 40. 60 кВ при резонансной частоте примерно 5 кГц.

Трансформатор Т1 (выходной трансформатор строчной развертки), содержит 2×50 витков провода диаметром 1,0 мм, намотанных бифилярно. Вторичная обмотка содержит 1000 витков диаметром 0,20. 0,32 мм.

Отметим, что в качестве управляемых ключевых элементов могут быть использованы современные биполярные и полевые транзисторы.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

Источник

Adblock
detector