Меню

Применение индукционного тока в генераторе

Генераторы переменного тока

Published by Admin Under Генераторы on Июль 20, 2016

Генератор переменного тока – это машина, которая преобразует механическую энергию в энергию электрическую на основании закона электромагнитной индукции. Проводник перемещается в магнитном поле, силовые линии поля пересекают проводник, в результате чего в проводнике инициируется движение электронов, что в свою очередь приводит к возникновению электродвижущей силы. Если к концам проводника подключить нагрузку, то в проводнике возникнет ток.

Переменным ток называется по той причине, что в течение времени он меняется по своей величине и направлению. При чем, изменения эти носят периодический (синусоидальный) характер. На графике это выглядит следующим образом:

Нулевая точка – это начало отсчета. Дальше показано, как ток изменяется во времени.

Устройство генератора переменного тока

Генератор состоит из проводника, намотанного на стальной магнитопровод (якорь) и системы магнитов – обыкновенных или электрических. Электрическая энергия снимается с якоря при помощи угольных щеток, прилегающих к кольцу, к которому в свою очередь присоединены концы проводника.

Якорь – подвижная (вращающаяся) часть генератора, статор – неподвижная, создающая магнитное поле.

Если магнитное поле в генераторе наводится электромагнитами, то в паре с ним работает еще один генератор – возбудитель. В возбудителе магнитное поле наводится обыкновенными магнитами.

В движение якорь приводится различными механическими средствами, в зависимости от применения. На электростанции – это турбины (паровые, водяные). В бытовых генераторах якорь вращается механической энергией, получаемой за счет двигателя внутреннего сгорания.

Область применения

Переменный ток широко распространен. На сегодняшний день на переменном токе работает почти вся бытовая техника и промышленность. Связано это с тем, что переменный ток передается на большие расстояния, с гораздо меньшими потерями, нежели постоянный. Также, переменный ток, легко преобразуется в постоянный с помощью диодных выпрямителей. Постоянный ток, преобразовать в переменный невозможно.

Генераторы переменного тока используются на всех электростанциях.

Промышленные электрогенераторы переменного тока используются для обеспечения аварийного автономного питания больниц, школ, детских садов, торговых и промышленных объектов. Также промышленные генераторные установки используются при строительстве новых объектов, это позволяет использовать электрооборудование на участках, где отсутствуют другие источники электроэнергии.

В бытовых дизельных и бензиновых установках для различных целей. Это и обеспечение автономного питания, в случае отключения линии электроэнергии, и ее получение в местах, где линия электропередач отсутствует.

Источник

Индукционные генераторы

ИНДУКЦИОННЫЙ ГЕНЕРАТОР — это преобразователь механической энергии в электрическую. Нужен электромеханический индукционный генератор? Росиндуктор — генератор от профессионалов с нашего склада. Индукционные генераторы работают при возникновении переменного магнитного поля в катушке. Катушка создаёт переменное магнитное поле, вектор которого меняется с заданной генератором частотой. Созданные вихревые токи, индуцированные магнитным полем, производят нагрев металлического элемента, который передаёт энергию теплоносителю.

Принцип действия индукционного генератора

Принцип действия индукционного генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле, или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле. Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нем индуктируется синусоидальная электродвижущая сила.

Индукционный генератор переменного тока

Это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока, например, за счет вращения проволочной катушки в магнитном поле, или, наоборот, за счет вращения магнита. До тех пор, пока силовые линии магнитного поля пересекают проводящую катушку, в ней индуцируется электрический ток. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Читайте также:  Как снять шкив генератора с обгонной муфтой фольксваген т5

Устройство индукционного генератора

По конструкции выделяют генераторы:

  • с неподвижными магнитными полюсами и вращающимся якорем,
  • с вращающимися магнитными полюсами и неподвижным статором.

Генераторы с неподвижными магнитными полюсами используются чаще, поскольку при неподвижной статорной обмотке нет необходимости снимать с помощью скользящих контактов (щеток) и контактных колец с ротора большой ток высокого напряжения. Статор (неподвижная часть) собирается из отдельных железных листов, изолированных друг от друга, а на внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора. Ротор (подвижная часть) обычно изготавливают из сплошного железа, а полюсные наконечники магнитных полюсов ротора собирают из листового железа. Для создания максимально возможной магнитной индукции при вращении между статором и полюсными наконечниками ротора желателен минимальный зазор, а геометрическую форму полюсных наконечников подбирают такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному. На сердечники полюсов садят катушки возбуждения, питаемые постоянным током, который подводится с помощью щеток к контактным кольцам, расположенным на валу генератора.

Электромеханический индукционный генератор

Магнитное поле в электромеханическом генераторе создается с помощью постоянного или электромагнита, переменная электродвижущая сила индуцируется в обмотке. В промышленных генераторах поле создается вращающимся магнитом, обмотки остаются неподвижными.

Генератор индукционного тока

Генераторы индукционного тока имеют широкую область применения: чаще всего их используют в местах, в которых требуется непрерывная подача электроэнергии, таких как медицинские учреждения, морозильные склады и т.п. также такие генераторы могут быть востребованы на строительных площадках и для электрификации загородных домов.

Генератор индукционного нагрева

Индукционный нагрев — это нагревание электропроводящих материалов электрическими токами, которые индуцируются переменным магнитным полем. Генераторы индукционного нагрева применяются для:

  • нагрева заготовок из магнитных материалов, в том числе для гибки и термообработки деталей,
  • термической обработки мелких и хрупких деталей,
  • поверхностной закалки изделий,
  • плавки, сварки и пайки металлов,
  • обеззараживания медицинского инструмента.

Источник

Индукционный генератор переменного тока

Индукционный генератор переменного тока. В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Рис. 6.9

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки с внешней цепью (рис. 6.9).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью . Магнитный поток, пронизывающий виток, меняется по закону , здесь S – площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

Читайте также:  Дизель генератор проектные работы

,

где N – число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.

В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии – и, тем не менее, снабжать ею заводы, дома и т.п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? – якобы удивился Фарадей. – Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Трансформатор.

Трансформатор. Электродвижущая сила мощных генераторов электростанций велика, между тем практическое использование электроэнергии требует чаще всего не очень высоких напряжений, а передача энергии, наоборот, очень высоких.

Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, для сохранения мощности увеличить напряжение. Напряжение, вырабатываемое генераторами (обычно около 20 кВ), повышают до напряжения 75 кВ, 500 кВ и даже до напряжения 1,15 МВ, в зависимости от длины линии электропередачи. Повышая напряжение с 20 до 500 кВ, то есть в 25 раз, уменьшают потери в линии в 625 раз.

Преобразование переменного тока определенной частоты, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется электромагнитным устройством, не имеющим подвижных частей – электрическим трансформатором. Трансформатор – важный элемент многих электрических приборов и механизмов. Зарядные устройства и игрушечные железные дороги, радиоприемники и телевизоры – всюду трудятся трансформаторы, которые понижают или повышают напряжение. Среди них встречаются как совсем крошечные, не более горошины, так и настоящие колоссы массой в сотни тонн и более.

Рис. 6.10

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из ферромагнитного материала (рис. 6.10). На магнитопроводе располагаются две обмотки – первичная и вторичная. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», то есть приборы, потребляющие электроэнергию, называется вторичной. Ферромагнетик увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз и локализует поток магнитной индукции внутри себя, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же остаются индуктивно связанными.

Действие трансформатора основано на явлениях взаимной индукции и самоиндукции. Индукция между первичной и вторичной обмоткой взаимна, то есть ток, протекающий во вторичной обмотке, индуцирует электродвижущую силу в первичной, точно так же, как первичная обмотка индуцирует электродвижущую силу во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции наблюдается также и во вторичной обмотке.

Читайте также:  Какое напряжение генератора опель зафира

Пусть первичная обмотка подсоединяется к источнику переменного тока с электродвижущей силой , поэтому в ней возникает переменный ток , создающий в магнитопроводе трансформатора переменный магнитный поток ?, который сосредотачивается внутри магнитного сердечника и пронизывает все витки первичной и вторичной обмоток.

При отсутствии внешней нагpузки выделяемая в тpансфоpматоpе мощность близка к нулю, то есть близка к нулю сила тока. Применим к первичной цепи закон Ома: сумма электродвижущей силы индукции и напряжения в цепи равна произведению силы тока на сопротивление. Полагая , можно записать: , следовательно, , где Ф – поток пронизывающий каждый виток первичной катушки. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же электродвижущую силу в каждом витке, то суммарная электродвижущая сила, индуцируемая в обмотке, пропорциональна полному числу ее витков. Следовательно, .

Коэффициент трансформации напряжения равен отношению напpяжения во вторичной цепи к напряжению в первичной цепи. Для амплитудных значений напряжений на обмотках можно записать:

.

Таким образом, коэффициент трансформации определяется как отношение числа витков вторичной обмотки к числу витков первичной обмотки. Если коэффициент , трансформатор будет повышающим, а если – понижающим.

Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике.

Токи Фуко. Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи – токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля–Ленца, большое количество тепла.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Рис. 6.11

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах (рис. 6.11), для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя левитационный нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

Источник

Adblock
detector