Меню

Принцип работы двухтактного генератора незатухающих электромагнитных колебаний

Принцип работы двухтактного генератора незатухающих электромагнитных колебаний

ЭЛЕКТРОДИНАМИКА

4. Электромагнитные колебания и волны

Тема. Генератор незатухаючих электромагнитных колебаний

Цель урока: ознакомить учащихся с одним из способов образования незатухаючих электромагнитных колебаний.

Тип урока: комбинированный урок.

1. Принцип действия трансформатора.

2. Холостой ход трансформатора.

3. Работа трансформатора под нагрузкой .

Незатухающие электромагнитные колебания в генераторе на транзисторе .

Изучение нового материала

2. Автоколебательные системы.

3. Генератор на транзисторе .

Закрепление изученного материала

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Реальный колебательный контур оказывает определенное сопротивление электрическому току. Поэтому часть переданной энергии контура непрерывно превращается во внутреннюю энергию проводов, рассеивается в окружающем пространстве. Чем больше сопротивление контура, тем быстрее затухают колебания. Если сопротивление контура очень большой, колебания вообще могут и не возникнуть — конденсатор разрядится, а перезарядки не произойдет.

Чтобы колебания не затухали, необходимо пополнять энергию контура, заряжая конденсатор от источника постоянного тока. Но если источник будет все время подключен к конденсатору, то конденсатор только будет обмениваться энергией с источником. Чтобы этого не происходило, контур может быть подключен к источнику только в те моменты, когда обкладка конденсатора, подключена к положительному полюсу источника тока, заряжена положительно. Во время колебаний знак заряда на обкладках периодически меняется, значит, ключ должен замыкать и размыкать круг с частотой, равной частоте электромагнитных колебаний контура, то есть несколько миллионов в секунду. Запирать с такой частотой механический ключ нельзя, поэтому в радиотехнике используют транзистор.

Очевидно, что для заполнения уменьшение энергии в колебательной системе необходимо иметь источник, с помощью которого пополнялась бы ее энергия. При этом важно выполнить два условия:

1) энергия, поступающая от источника в колебательную систему за период, должно точно равняться энергии, что за это время необратимо преобразуется в другие виды энергии;

2) энергия должна поступать в колебательную систему в такт, т.е. согласованно по фазе со свободными колебаниями, которые происходят в системе.

Ø Системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника внутри системы, называются автоколивальними.

Ø Незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил, называются автоколебаниями.

Любая автоколивальна система состоит из четырех элементов:

1) источники энергии, за счет которого поддерживаются незатухающие колебания в генераторе на транзисторе это источник постоянного напряжения);

2) клапана — устройства, регулирующего поступление энергии от источника в колебательную систему (в генераторе роль клапана играет транзистор);

3) колебательной системы, то есть той части автоколивальної системы, в которой непосредственно происходят колебания в генераторе на транзисторе это колебательный контур);

4) устройства, что обеспечивает обратную связь, с помощью которого колебательная система управляет клапаном (в генераторе на транзисторе это индуктивная связь катушки контура с катушкой в цепи эмиттер — база).

3. Генератор на транзисторе

Рассмотрим одну из самых распространенных автоколебательных систем — генератор на транзисторе.

Источником энергии является источник тока, а колебательной системой — колебательный контур. Устройство, регулирующее поступление энергии от источника в колебательную систему, в генераторе есть транзистор.

А кто же управляет работой самого транзистора? Откуда транзистор «может знать», когда нужно замыкать или размыкать круг? Лучший вариант, если работой транзистора будут управлять колебания в контуре, тогда энергия от источника тока будет поступать в контур, когда это нужно. Иначе говоря, необходимо обеспечить обратную связь в системе. Такой обратную связь можно сделать, например, индуктивным: если между эмиттером и базой транзистора включить катушку L 3 B , на которую будет действовать магнитное поле катушки контура, то напряжение между эмиттером и базой будет меняться в такт с колебаниями в контуре. Поэтому транзистор «откроет» круг в течение определенной части периода колебаний.

Читайте также:  Аварийный генератор лост арк

Существует много типов электрических автоколебательных систем. Без них нельзя даже представить системы связи, радиолокация, компьютеры и др.

1 — источники постоянного тока;

4 — катушка, что обеспечивает обратную связь

1. Опишите свойства p — n -перехода в полупроводниках.

2. Какую роль в генераторе незатухаючих электромагнитных колебаний играет транзистор?

3. Приведите примеры автоколебательных систем.

2. В чем заключается отличие автоколебаний от вынужденных колебаний и от свободных?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. От чего зависит частота колебаний, возникающих в генераторе на транзисторе? амплитуда этих колебаний?

2. Чему равна частота электромагнитных колебаний, происходящих в генераторе?

Емкость конденсатора колебательного контура 0,01 мкФ. Конденсатор зарядили до напряжения 40 В и соединили с катушкой индуктивности. В контуре возникли затухающие колебания. Какое количество теплоты выделилось за время полного затухания колебаний?

• Системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника внутри системы, называются автоколивальними.

• Незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил, называются автоколебаниями.

• Любая автоколивальна система состоит из четырех элементов: 1) источника энергии; 2) клапана; 3) колебательной системы; 4) устройства, что обеспечивает обратную связь.

Источник

§ 36. Генератор на транзисторе. Автоколебания

Вынужденные колебания, которые мы рассматривали до сих пор, возникают под действием переменного напряжения, вырабатываемого генераторами на электростанциях. Такие генераторы не могут создавать колебания высокой частоты, необходимые для радиосвязи. Потребовалась бы чрезмерно большая скорость вращения ротора. Колебания высокой частоты получают с помощью других устройств, например с помощью генератора на транзисторе. Он назван так потому, что одной из основных его частей является полупроводниковый прибор — транзистор.

Автоколебательные системы. Незатухающие вынужденные колебания нередко поддерживаются в цепи действием внешнего периодического напряжения. Но возможны и другие способы получения незатухающих колебаний.

Пусть в системе, в которой могут существовать свободные электромагнитные колебания, имеется источник энергии. Если сама система будет регулировать поступление энергии в колебательный контур для компенсации потерь энергии на резисторе, то в ней могут возникнуть незатухающие колебания.

Системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника внутри самой системы, называются автоколебательными. Незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил, называются автоколебаниями.

Генератор на транзисторе — пример автоколебательной системы. Он состоит из колебательного контура с конденсатором емкостью С и катушкой индуктивностью L, источника энергии и транзистора.

Как создать незатухающие колебания в контуре? Известно, что если конденсатор колебательного контура зарядить, то в контуре возникнут затухающие колебания. В конце каждого периода колебаний заряд на пластинах конденсатора имеет меньшее значение, чем в начале периода. Суммарный заряд, конечно, сохраняется (он всегда равен нулю), но происходит уменьшение положительного заряда одной пластины и отрицательного заряда другой на равные по модулю значения. В результате энергия колебаний уменьшается, так как она согласно формуле (4.1) пропорциональна квадрату заряда одной из пластин конденсатора. Чтобы колебания не затухали, нужно компенсировать потери энергии за каждый период.

Читайте также:  Обратная связь через генератор

Пополнять энергию в контуре можно, подзаряжая конденсатор. Для этого надо периодически подключать контур к источнику постоянного напряжения. Конденсатор должен подключаться к источнику только в те интервалы времени, когда присоединенная к положительному полюсу источника пластина заряжена положительно, а присоединенная к отрицательному полюсу — отрицательно (рис. 4.21). Только в этом случае источник будет подзаряжать конденсатор, пополняя его энергию.

Если же ключ замкнуть в момент, когда присоединенная к положительному полюсу источника пластина имеет отрицательный заряд, а присоединенная к отрицательному полюсу — положительный, то конденсатор будет разряжаться через источник (рис. 4.22). Энергия конденсатора при этом будет убывать.

Следовательно, источник постоянного напряжения, постоянно подключенный к конденсатору контура, не может поддерживать в нем незатухающие колебания, так же как постоянная сила не может поддерживать механические колебания. В течение половины периода энергия поступает в контур, а в течение следующей половины периода возвращается в источник. В контуре незатухающие колебания установятся лишь при условии, что источник будет подключаться к контуру в те интервалы времени, когда возможна передача энергии конденсатору. Для этого необходимо обеспечить автоматическую работу ключа (или клапана, как его часто называют). При высокой частоте колебаний ключ должен обладать надежным быстродействием. В качестве такого практически безынерционного ключа и используется транзистор.

Транзистор, напомним, состоит из трех различных полупроводников: эмиттера, базы и коллектора. Эмиттер и коллектор имеют одинаковые основные носители заряда, например дырки (это полупроводник p-типа), а база имеет основные носители противоположного знака, например электроны (полупроводник n-типа). Схематическое изображение транзистора показано на рисунке 4.23.

Работа генератора на транзисторе. Упрощенная схема генератора на транзисторе показана на рисунке 4.24. Колебательный контур соединен последовательно с источником напряжения и транзистором таким образом, что на эмиттер подается положительный потенциал, а на коллектор — отрицательный. При этом переход эмиттер — база (эмит- терный переход) является прямым, а переход база — коллектор (коллекторный переход) оказывается обратным, и ток в цепи не идет. Это соответствует разомкнутому ключу на рисунках 4.21, 4.22.

Чтобы в цепи контура возникал ток и подзаряжал конденсатор контура в ходе колебаний, нужно сообщать базе отрицательный относительно эмиттера потенциал, причем в те интервалы времени, когда верхняя (см. рис. 4.24) пластина конденсатора заряжена положительно, а нижняя — отрицательно. Это соответствует замкнутому ключу на рисунке 4.21.

В интервалы времени, когда верхняя пластина конденсатора заряжена отрицательно, а нижняя — положительно, ток в цепи контура должен отсутствовать. Для этого база должна иметь положительный потенциал относительно эмиттера.

Читайте также:  Расчет катушек для генераторов с постоянными магнитами

Таким образом, для компенсации потерь энергии колебаний в контуре напряжение на эмиттерном переходе должно периодически менять знак в строгом соответствии с колебаниями напряжения на контуре. Необходима, как говорят, обратная связь.

Обратная связь в рассматриваемом генераторе — индуктивная. К эмиттерному переходу подключена катушка индуктивностью LCB, индуктивно связанная с катушкой индуктивностью L контура. Колебания в контуре вследствие электромагнитной индукции возбуждают колебания напряжения на концах катушки, а тем самым и на эмиттерном переходе. Если фаза колебаний напряжения на эмиттерном переходе подобрана правильно, то «толчки» тока в цепи контура действуют на контур в нужные интервалы времени, и колебания не затухают. Напротив, амплитуда колебаний в контуре возрастает до тех пор, пока потери энергии в контуре не станут точно компенсироваться поступлением энергии от источника. Эта амплитуда тем больше, чем больше напряжение источника. Увеличение напряжения приводит к усилению «толчков» тока, подзаряжающего конденсатор.

Генераторы на транзисторах широко применяются не только во многих радиотехнических устройствах: радиоприемниках, передающих радиостанциях, усилителях ит.д., но и в современных электронно-вычислительных машинах.

Основные элементы автоколебательной системы. На примере генератора на транзисторе можно выделить основные элементы, характерные для многих автоколебательных систем (рис. 4.25).

1. Источник энергии, за счет которого поддерживаются незатухающие колебания (в генераторе на транзисторе это источник постоянного напряжения).

2. Колебательная система — та часть автоколебательной системы, непосредственно в которой происходят колебания (в генераторе на транзисторе это колебательный контур).

3. Устройство, регулирующее поступление энергии от источника в колебательную систему, — клапан (в рассмотренном генераторе роль клапана выполняет транзистор).

4. Устройство, обеспечивающее обратную связь, с помощью которой колебательная система управляет клапаном (в генераторе на транзисторе предусмотрена индуктивная связь катушки контура с катушкой в цепи эмиттер — база).

Примеры других автоколебательных систем. Автоколебания возбуждаются не только в электрических системах, но и в механических. К таким системам относятся обычные часы с маятником или балансиром (колесиком с пружинкой, совершающим крутильные колебания). Источником энергии в часах служит потенциальная энергия поднятой гири или сжатой пружины.

К автоколебательным системам относятся электрический звонок с прерывателем, свисток, органные трубы и многое другое. Наше сердце и легкие также можно рассматривать как автоколебательные системы.

Мы ознакомились с наиболее сложным видом колебаний — автоколебаниями. В автоколебательных системах вырабатываются незатухающие колебания различных частот. Без таких систем не было бы ни современной радиосвязи, ни телевидения, ни ЭВМ.

Вопросы к параграфу

1. Что такое автоколебательная система?

2. В чем отличие автоколебаний от вынужденных и свободных колебаний?

3. Опишите свойства р—n-перехода в полупроводниках.

5. Какова роль транзистора в генерации автоколебаний?

6. Как осуществляется обратная связь в генераторе на транзисторе?

7. Укажите основные элементы автоколебательной системы.

8. Приведите примеры автоколебательных систем, не рассмотренные в тексте.

На этом мы заканчиваем изучение механических и электрических колебаний. Замечательна тождественность общего характера процессов различной природы, тождественность математических уравнений, которые их описывают. Эта тождественность, как мы видели, существенно облегчает изучение колебаний.

Источник

Adblock
detector