Меню

Python генератор случайных чисел в диапазоне

Генератор псевдослучайных чисел – random

В компьютерных программах нередко требуется эмуляция случайности. Например, при разработке игр. Если в программе имеется некий генератор, то есть производитель, случайного числа, то, используя полученное таким образом число, можно выбирать ту или иную ветку выполнения программы, или произвольный объект из коллекции. Другими словами, главное – сгенерировать число. Эмуляция случайности иного рода основывается на нем.

Мы наверняка не знаем, есть ли в природе случайность, или она нам только кажется из-за ограниченности наших знаний. Мы только знаем, что в программировании настоящей случайности нет. Неоткуда взяться произвольному числу, нельзя запрограммировать его появление из ниоткуда. Можно лишь создать программу, которая в результате применения сложной формулы к «зерну» будет выдавать число, и нам будет казаться, что это число случайно.

«Зерно» – это исходные данные для формулы. Им может быть, например, системное время в миллисекундах, которое постоянно меняется. Следовательно, «зерно» будет постоянно разным. Или программист может задавать его самостоятельно.

Подобную программу (в реальности модуль или функцию) называют генератором псевдослучайных чисел. В состав стандартной библиотеки языка Python входит модуль random . Он содержит множество функций, связанных с эмуляцией случайности (например, «перемешивание» элементов последовательности), а не только функции генерации псевдослучайных чисел.

В этом уроке будут рассмотрены функции random() , randrange() и randint() из модуля random . Обратите внимание, что модуль random содержит одноименную функцию random() . Так бывает.

Чтобы обращаться к функциям, надо импортировать модуль random :

Или импортировать отдельные функции из него:

Функции для получения целых «случайных» чисел – randint() и randrange()

Функции randint() и randrange() генерируют псевдослучайные целые числа. Первая из них наиболее простая и всегда принимает только два аргумента – пределы целочисленного диапазона, из которого выбирается любое число:

или (если импортировались отдельные функции):

В случае randint() обе границы включаются в диапазон, т. е. на языке математики отрезок описывается как [a; b].

Числа могут быть отрицательными:

Но первое число всегда должно быть меньше или, по-крайней мере, равно второму. То есть a randrange() сложнее. Она может принимать один аргумент, два или даже три. Если указан только один, то она возвращает случайное число от 0 до указанного аргумента. Причем сам аргумент в диапазон не входит. На языке математики – это [0; a).

Если в randrange() передается два аргумента, то она работает аналогично randint() за одним исключением. Верхняя граница не входит в диапазон, т. е. [a; b).

Здесь результатом второго вызова всегда будет число 1.

Если в randrange() передается три аргумента, то первые два – это границы диапазона, как в случае с двумя аргументами, а третий – так называемый шаг. Если, например, функция вызывается как randrange(10, 20, 3) , то «случайное» число будет выбираться из чисел 10, 13, 16, 19:

Функция random() – «случайные» вещественные числа

Чтобы получить случайное вещественное число, или, как говорят, число с плавающей точкой, следует использовать функцию random() из одноименного модуля random языка Python. Она не принимает никаких аргументов и возвращает число от 0 до 1, не включая 1:

Результат содержит много знаков после запятой. Чтобы его округлить, можно воспользоваться встроенной в Python функцией round() :

Чтобы получать случайные вещественные числа в иных пределах, отличных от [0; 1), прибегают к математическим приемам. Так если умножить полученное из random() число на любое целое, то получится вещественное в диапазоне от 0 до этого целого, не включая его:

Если нижняя граница должна быть отличной от нуля, то число из random() надо умножать на разницу между верхней и нижней границами, после чего прибавить нижнюю:

В данном примере число умножается на 6. В результате получается число от 0 до 6. Прибавив 4, получаем число от 4 до 10.

Пример получения случайных чисел от -1 до 1:

Нижняя граница равна -1. При вычитании получается +. Когда добавляется нижняя граница, то плюс заменяется на минус ( +(-1) = — 1).

Для получения псевдослучайных чисел можно пользоваться исключительно функцией random() . Если требуется получить целое, то всегда можно округлить до него с помощью round() или отбросить дробную часть с помощью int() :

Практическая работа

Используя функцию randrange() получите псевдослучайное четное число в пределах от 6 до 12. Также получите число кратное пяти в пределах от 5 до 100.

Напишите программу, которая запрашивает у пользователя границы диапазона и какое (целое или вещественное) число он хочет получить. Выводит на экран подходящее случайное число.

Примеры решения и дополнительные уроки в android-приложении и pdf-версии курса

Источник

Python 3: Генерация случайных чисел (модуль random)¶

«Генерация случайных чисел слишком важна, чтобы оставлять её на волю случая»

Python порождает случайные числа на основе формулы, так что они не на самом деле случайные, а, как говорят, псевдослучайные [1]. Этот способ удобен для большинства приложений (кроме онлайновых казино) [2].

Читайте также:  Куда идет провод от генератора лада калина
[1] Википедия: Генератор псевдослучайных чисел
[2] Доусон М. Программируем на Python. — СПб.: Питер, 2014. — 416 с.: ил. — 3-е изд

Модуль random позволяет генерировать случайные числа. Прежде чем использовать модуль, необходимо подключить его с помощью инструкции:

random.random¶

random.random() — возвращает псевдослучайное число от 0.0 до 1.0

random.seed¶

random.seed( ) — настраивает генератор случайных чисел на новую последовательность. По умолчанию используется системное время. Если значение параметра будет одиноким, то генерируется одинокое число:

random.uniform¶

random.uniform( , ) — возвращает псевдослучайное вещественное число в диапазоне от до :

random.randint¶

random.randint( , ) — возвращает псевдослучайное целое число в диапазоне от до :

random.choince¶

random.choince( ) — возвращает случайный элемент из любой последовательности (строки, списка, кортежа):

random.randrange¶

random.randrange( , , ) — возвращает случайно выбранное число из последовательности.

random.shuffle¶

random.shuffle( ) — перемешивает последовательность (изменяется сама последовательность). Поэтому функция не работает для неизменяемых объектов.

Вероятностные распределения¶

random.triangular(low, high, mode) — случайное число с плавающей точкой, low ≤ N ≤ high . Mode — распределение.

random.betavariate(alpha, beta) — бета-распределение. alpha>0 , beta>0 . Возвращает от 0 до 1.

random.expovariate(lambd) — экспоненциальное распределение. lambd равен 1/среднее желаемое. Lambd должен быть отличным от нуля. Возвращаемые значения от 0 до плюс бесконечности, если lambd положительно, и от минус бесконечности до 0, если lambd отрицательный.

random.gammavariate(alpha, beta) — гамма-распределение. Условия на параметры alpha>0 и beta>0 .

random.gauss(значение, стандартное отклонение) — распределение Гаусса.

random.lognormvariate(mu, sigma) — логарифм нормального распределения. Если взять натуральный логарифм этого распределения, то вы получите нормальное распределение со средним mu и стандартным отклонением sigma . mu может иметь любое значение, и sigma должна быть больше нуля.

random.normalvariate(mu, sigma) — нормальное распределение. mu — среднее значение, sigma — стандартное отклонение.

random.vonmisesvariate(mu, kappa) — mu — средний угол, выраженный в радианах от 0 до 2π, и kappa — параметр концентрации, который должен быть больше или равен нулю. Если каппа равна нулю, это распределение сводится к случайному углу в диапазоне от 0 до 2π.

random.paretovariate(alpha) — распределение Парето.

random.weibullvariate(alpha, beta) — распределение Вейбулла.

Примеры¶

Генерация произвольного пароля¶

Хороший пароль должен быть произвольным и состоять минимум из 6 символов, в нём должны быть цифры, строчные и прописные буквы. Приготовить такой пароль можно по следующему рецепту:

Этот же скрипт можно записать всего в две строки:

Данная команда является краткой записью цикла for, вместо неё можно было написать так:

Данный цикл повторяется 12 раз и на каждом круге добавляет к строке psw произвольно выбранный элемент из списка.

Источник

Случайные числа в Python

Чтобы работать со случайным числом в Python, нам нужно сначала импортировать модуль random, который обеспечивает псевдослучайность.

Модуль случайных чисел в Python использует Mersenne Twister в качестве основного генератора случайных чисел. Таким образом, этот модуль совершенно не подходит для криптографических целей, поскольку является детерминированным. Однако мы можем использовать модуль random в большинстве случаев, потому что он содержит множество хорошо известных случайных распределений.

Случайное целое число в Python

В этом разделе мы обсудим случайную генерацию целых чисел. Мы можем использовать функцию randint (a, b), чтобы получить случайное целое число от диапазона a до b. Опять же, мы можем получить число из последовательности, используя функцию randrange (start, stop, step). Давайте посмотрим на пример, чтобы получить случайное целое число.

Для каждого прогона результат будет меняться. Однако здесь приведен пример вывода.

С плавающей запятой

Есть несколько функций, которые возвращают вещественное число или с плавающей точкой в случайном порядке. Например, функция random() возвращает действительное число от 0 до 1 (исключая).

Опять же, функции uniform (a, b) возвращают действительное число от a до b. Кроме того, в модуле random также доступны некоторые случайные распределения. Мы также можем получить реальное число из этого распределения.

Мы можем получить случайные числа из экспоненциального распределения, используя экспоненциальную функцию (лямбд).

Значения на выходе будут отличаться для каждого выполнения. Вы получите такой результат:

Random seed в Python

Генерация случайных чисел Python основана на предыдущем числе, поэтому использование системного времени – отличный способ гарантировать, что каждый раз, когда наша программа запускается, она генерирует разные числа. Мы можем использовать функцию random seed() для установки начального значения.

Обратите внимание: если наше начальное значение не меняется при каждом выполнении, мы получим одинаковую последовательность чисел.

Ниже приведен пример программы, подтверждающей эту теорию о ценности seed.

Случайный список – choice(), shuffle(), sample()

Есть несколько функций для использования случайности в последовательности. Например, с помощью функции choice() вы можете получить случайный элемент из последовательности.

Опять же, используя функцию shuffle(), вы можете перетасовать элементы в последовательности.

С помощью функции sample(), вы можете получить x количество элементов из последовательности случайным образом. Итак, давайте посмотрим следующий код для примера случайного списка:

Читайте также:  Масло для бензинового генератора denzel

Источник

Готовимся к собеседованию: случайные числа в Python

Случайность управляет миром, а вы будете управлять случайностью. С помощью Python, конечно.

Чтобы имитировать бросок кубика в игре или предсказать загруженность интернет-ресурса, нужны случайные числа.

Мы разобрали самые популярные вопросы о случайных числах в Python с собеседований. Чаще всего для ответа достаточно написать код и кратко его прокомментировать. Да пребудет с вами Великий Рандом!

Главное, что нужно помнить

  • Случайные числа — это последовательность чисел, которая подчиняется одному из законов распределения.
  • Главных распределений два: равномерное, с графиком в виде горизонтальной линии, и нормальное, с графиком-колоколом (его ещё называют гауссианой).

  • Основная Python-библиотека для генерации случайных чисел называется random.
  • Большинство случайных чисел в программировании — не случайные, а псевдослучайные.

С некоторых пор утверждает, что он data scientist. В предыдущих сезонах выдавал себя за математика, звукорежиссёра, радиоведущего, переводчика, писателя. Кандидат наук, но не точных. Бесстрашно пишет о Data Science и программировании на Python.

Вопрос 1. Что такое случайные числа?

Что нужно помнить: случайные числа — это математическое понятие, и их не следует путать с обыденными, произвольными числами. Случайное число в математике и программировании — это:

  • число из определённого диапазона,
  • у которого есть определённая вероятность выпадения.

Другими словами, существует закон или правило, которое называется «функцией распределения» или просто «распределением». И это самое распределение «раздаёт» каждому числу из диапазона определённую вероятность выпадения.

В качестве диапазона значений математикам и программистам привычнее всего использовать диапазон действительных чисел от 0 до 1, но это могут быть и целые числа от 1 до 6, как в игральном кубике, или от 100 до 1 000 000 — и так далее. Главное, что и распределение, и диапазон известны заранее, а само число нет.

Итого: случайные числа — это искусственно полученная последовательность чисел из определённого диапазона, которая подчиняется одному из законов распределения случайной величины.

Распределения бывают разные. Так, равномерное распределение — это когда любое значение из диапазона имеет одну и ту же вероятность выпадения (как у игрального кубика или монетки). Если же распределение, например, нормальное (гауссиана), то чаще выпадают числа из середины диапазона. Есть даже таблица — она поможет выбрать подходящее распределение.

Вопрос 2. Как получить случайные числа в Python?

Основных способов два: с помощью «родной» библиотеки random и с помощью модуля numpy.random из библиотеки numpy.

Прежде чем интервьюер придерётся, не забудьте сказать, что и random, и numpy.random — генераторы псевдослучайных чисел (о них ниже). Истинно случайные числа можно получить, например, c сайта Random.Org: там они генерируются с помощью атмосферного шума.

Библиотека random имеет меньший объём, чем numpy.random, и проще в использовании. Зато numpy.random содержит дополнительные распределения для научных вычислений, а также функции для генерирования целых массивов случайных данных.

В первой строчке мы импортировали default_rng — это «генератор генераторов» случайных массивов из модуля numpy.random. Во второй — создали экземпляр такого генератора и присвоили ему имя rng. В третьей использовали его метод standard_normal, чтобы получить numpy-массив из 10 случайных чисел, и записали массив в переменную vals.

Вопрос 3. Псевдослучайные числа

Псевдослучайные числа — это, если очень упрощать, последовательность чисел, которая только выглядит случайной, а на самом деле каждое число в ней определяется алгоритмом, то есть вычисляется. Псевдослучайные последовательности цикличны: через какой-то период все числа повторяются в точности в том же порядке.

Библиотека random и модуль numpy.random содержат в себе генератор не истинно случайных, а именно псевдослучайных чисел.

Генерировать истинно случайные числа дорого и сложно. Основная трудность состоит в том, чтобы гарантировать отсутствие какого-либо цикла, правила или алгоритма. Чаще всего истинно случайные числа берут из физического мира: шумов атмосферы, детекторов частиц, колебаний электрического тока или из космического излучения.

То, что псевдослучайная последовательность, в отличие от истинно случайной, воспроизводима, очень удобно для практических задач: часто нужно подать на вход ту же самую последовательность второй раз, чтобы посмотреть, как работает программа после добавления новых фич.

Наиболее популярный современный алгоритм генерирования псевдослучайных чисел разработан в 1997 году и носит красивое название «Вихрь Мерсенна». Он используется и в Python. Последовательность чисел, порождённая им, статистически неотличима от истинно случайной и имеет период, равный числу с шестью тысячами знаков. Этого хватает для задач симуляции и моделирования, но с точки зрения криптографии такая последовательность всё равно небезопасна: для успешной атаки достаточно иметь сравнительно небольшую сгенерированную этим генератором последовательность.

Читайте также:  Снятие генератора ниссан террано 2015 года

Вопрос 4. Как повторить случайную последовательность?

Истинно случайную последовательность повторить невозможно. Но для повторения псевдослучайных чисел в обеих основных библиотеках — random и numpy.random есть функция seed (), которая отвечает за инициализацию («посев») последовательности.

Передавая аргумент 42 в функцию seed(), мы указываем конкретное место в псевдослучайной последовательности, поэтому команда random.random() в третьей и последней строках выдаёт одинаковое число — оно идёт первым после точки, помеченной как seed (42).

В seed() можно передать целые и дробные числа, а также строки и кортежи. Если оставить скобки пустыми, то в качестве аргумента seed() возьмёт текущее системное время.

Аналогичная функция есть в модуле numpy.random:

Вопрос 5. Красные и зелёные шары

Часто на собеседованиях просят написать программу, связанную с вероятностями. Например, код для численной проверки ответа к задачке «Какова вероятность вытащить зелёный шар из мешка, в котором 1 зелёный и 4 красных шара».
(Ответ ⅕ = 0,2).

Иными словами, если 100 раз вынимать шар из мешка, возвращая его обратно, количество выпадения зелёных шаров должно приближаться к 20. Вариант кода для проверки:

Функция random.choice() случайным образом выбирает значение из заданного диапазона — списка из одного « green» и четырёх « red». Код выведет количество зелёных шаров после 100 попыток.

Вопрос 6. Нечестная монетка

Другой вариант: предположим, у нас есть так называемая «нечестная» монетка, где орёл ( H, «heads») и решка ( T, «tails») выпадают не с вероятностью ½, как положено, а по-другому: орёл с вероятностью p(H) = 0,2, а решка, соответственно, p(T) = 0,8.

Тогда код для проверки будет выглядеть примерно так:

Здесь используется другая функция, choices, в которую вместе со списком значений можно в параметре weights передавать вероятности их выпадения.

Код выведет количество выпавших орлов после 10 000 бросков.

К слову: задачи на нечестные монетки, наряду с поиском n-ного числа Фибоначчи и нахождением угла между часовой и минутной стрелками, кочуют из одного собеседования в другое уже не первый десяток лет. Есть вероятность, что одна из них попадётся и вам.

Вопрос 7. Проиллюстрируйте закон больших чисел

Закон больших чисел (ЗБЧ) говорит, что при увеличении количества попыток случайная величина стремится к своему математическому ожиданию — всё усредняется. Подробнее об этом можно прочитать в нашей статье об основах математики для Data Science.

Код для иллюстрации ЗБЧ на примере честной монетки выглядит так:

Вначале мы импортировали уже знакомый нам модуль random и модуль matplotlib.plt — он нужен для рисования простых графиков. После этого определили переменные: общее количество бросков ( total_flips), список из значений вероятностей ( numerical_probability), количество выпавших орлов ( H_count).

Теперь в цикле мы 5 000 раз «подбрасываем» монетку. Если выпадает орёл (« H»), то делим текущее количество выпавших орлов на текущее количество бросков и добавляем итоговое значение в конец списка numerical_probability. В конце рисуем график.

Чем больше бросков, тем ближе к 0,5 вероятность выпадения орла. Всё, как и предсказывает закон больших чисел.

Вопрос 8. Где применяются случайные числа?

В логистике: при расчётах страховых запасов товара — чтобы склад внезапно не опустел или, наоборот, не пришлось держать избыток товара слишком долго. Принято считать, что поведение покупателей случайно и подчиняется одной из разновидностей нормального распределения. В особо запущенных случаях считается случайным даже поведение поставщиков.

В науке: с помощью метода Монте-Карло учёные моделируют поведение частиц во фрактальном окружении в трёхмерном пространстве. Метод Монте-Карло основан на использовании большого количества генерируемых случайных чисел.

В микроэлектронике: броуновское движение частиц играет важную роль в формировании пористости плёночного покрытия полупроводников при напылении его на поверхность. Просчитать это на компьютере гораздо дешевле, чем экспериментировать с реальным покрытием, поэтому сначала его рассчитывают, а потом запускают в производство.

В криптографии: для генерации шифровальных ключей. Здесь становится особенно важным различие между псевдослучайными и истинно случайными числами.

Случайности не случайны

Так говорил мастер Угвэй , и мы теперь понимаем его чуть лучше: он жил довольно долго, мог заметить период повторения одних и тех же событий и догадаться, что все случайности в этом мире на самом деле псевдослучайны. У нас с вами времени меньше, поэтому придётся изучать документацию: random, numpy.random.

А чтобы никакая псевдослучайность не помешала вам успешно пройти собеседование, приходите в наш Шаолинь на курс «Профессия Python-разработчик». Вы изучите random, numpy и ещё много приёмов пайтонического кунг-фу, а мы поможем с наставниками, единомышленниками и, конечно, с трудоустройством.

Источник

Adblock
detector