Меню

Виды систем возбуждения синхронных генераторов

Системы возбуждения синхронных генераторов

Ток, протекающий в обмотке статора, создает поле (реакцию якоря), синхронно вращающееся с ротором и влияющее на результирующий поток в воздушном зазоре машины. Степень и характер этого влияния определяют параметры машины, значение и коэффициент нагрузки cos φ. Это подтверждают внешние и регулировочные характеристики (см. рис. 9 и 10). Генератор, в свою очередь, является источником электроэнергии автономной системы и должен обеспечивать заданное качество электроэнергии в статических и динамических режимах. Наряду с обеспечением качества электроэнергии в ЭЭС реализуются различные виды защит. Например, при коротком замыкании защита системы должна быть избирательной (селективной) и отключать только поврежденные участки сети. В настоящее время селективность обеспечивают введением выдержек времени на отключение различных участков, при этом действует принцип: источник электроэнергии должен отключаться в последнюю очередь. Так как существующая защитная аппаратура срабатывает по току, то в момент отключения ток должен быть не меньше определенного значения. Таким образом, на систему возбуждения синхронного генератора (СГ) автономной системы возлагаются функции обеспечения качества электроэнергии и определенного значения тока в режиме короткого замыкания.

Способ возбуждения генератора, а именно три его компоненты: источник возбуждения; принцип регулирования; способ передачи в обмотку возбуждения электроэнергии – представляют собой важнейший фактор, влияющий на все характеристики генератора, в том числе и его конструкцию [9].

Способы передачи электроэнергии в обмотку возбуждения. Относительно передачи энергии в обмотку возбуждения различают СГ со щетками и без щеток.

Принципиальная схема СГ со щетками представлена на рис. 11. В этой схеме обмотка возбуждения подключена к источнику постоянного тока через скользящие контакты, осуществляемые посредством двух неподвижных щеток и двух колец, расположенных на валу (изолированных от вала и одно от другого). Источником возбуждения здесь служит сам генератор.

Рис. 11. Блок-схема системы возбуждения

синхронного генератора со щетками:

САРН – система автоматического регулирования напряжения; ОВ – обмотка возбуждения; ПД – первичный двигатель

Существует достаточно много разновидностей бесщеточных синхронных генераторов. На рис. 12 представлен один из вариантов такого генератора с электромашинным возбудителем.

Рис. 12. Блок-схема системы возбуждения

бесщеточного синхронного генератора с возбудителем (В)

Принципы регулирования тока возбуждения при стабилизации напряжения синхронного генератора. Для регулирования тока возбуждения применяют разные системы, в которых использованы следующие принципы регулирования:

– токовое компаундирование – компенсация изменения значения тока нагрузки (I);

– амплитудно-фазовое компаундирование (фазовое компаундирование) – компенсация изменения значения тока и коэффициента мощности нагрузки (I, cos φ);

3) комбинированное – сочетание систем, использующих регулирование по отклонению и по возмущению.

В ЭЭС применяют все три вида систем регулирования напряжения синхронных генераторов. Каждая их них имеет свои области применения, определяемые параметрами генераторов [7].

Регулирование по отклонению, как известно, позволяет компенсировать изменение напряжения при любых видах возмущающих воздействий.

Схемы возбуждения, построенные по этому принципу, целесообразно использовать для генераторов с высоким значением ОКЗ, так как в этом случае регулируемая мощность системы возбуждения будет иметь меньшее значение. Эти схемы характеризуются большим значением коэффициента усиления по мощности и имеют тенденцию к автоколебательному режиму.

Регулирование по возмущающему воздействию компенсирует действие основных факторов, приводящих к снижению напряжения генератора, а также позволяет повысить быстродействие в переходном режиме, так как возмущение воздействует одновременно на объект управления и на его систему регулирования.

Системы возбуждения, реагирующие только на значение нагрузки (системы токового компаундирования), применяют обычно для генераторов с высоким значением ОКЗ. В этом случае регулировочные характеристики при cos φ = 0 и cos φ = 1 незначительно отличаются друг от друга (рис. 13) и точность поддержания напряжения оказывается выше, чем в случае применения генератора с низким ОКЗ.

Для генераторов с низким ОКЗ применяют, как правило, схемы возбуждения, реагирующие на значение и коэффициент мощности нагрузки, то есть схемы амплитудно-фазового (фазового) компаундирования.

0 1 I

Рис. 13. Регулировочные характеристики синхрон-ных генераторов с различными значениями ОКЗ: 1 – ОКЗ = 0,82; 2 – ОКЗ = 1,8

Комбинированное регулирование осуществляют введением в системы компаундирования обратной связи по отклонению, что повышает точность регулирования. Основную роль в таких системах играет канал по возмущению. Канал по отклонению служит для устранения второстепенных возмущений и имеет небольшую мощность. Часто его выполняют в виде корректора напряжения, который имеет два способа включения – на обмотку возбуждения или на элемент системы на стороне переменного тока.

Источник возбуждения.Питать обмотку возбуждения можно от независимого источника электроэнергии (возбудителя) и/или от собственных шин генератора. Системы, в составе которых есть независимый источник энергии, относят к системам косвенного действия. Недостатки таких систем очевидны: они имеют повышенные массогабаритные показатели и ухудшенные показатели по быстродействию, так как к инерционности генератора и системы добавляется инерционность возбудителя. Примером такой системы может служить регулятор УБК-М в генераторах серии МС [4].

Системы прямого действия не имеют независимого источника энергии и для возбуждения используют энергию самого генератора. Регулирующее воздействие в таких системах осуществляется непосредственно в цепи возбуждения генератора. Конструктивно систему возбуждения располагают над статором генератора рядом с воздухоохладителем.

Системы прямого компаундирования.В системах прямого компаундирования ток обмотки возбуждения СГ должны определять две составляющие, пропорциональные напряжению и току. Составляющая, пропорциональная напряжению, необходима для обеспечения режима холостого хода и создания основного потока возбуждения. Составляющая, пропорциональная току нагрузки, служит для компенсации тех факторов, которые вызывают снижение напряжения при изменении нагрузки, а также для обеспечения необходимого для срабатывания защитной аппаратуры значения установившегося тока короткого замыкания.

В зависимости от того, как осуществляется суммирование сигналов, пропорциональных напряжению и току, различают системы:

– прямого токового компаундирования – суммирование арифметическое (рис. 14, а);

– прямого фазового компаундирования – суммирование геометрическое (рис. 14, б).

В схеме прямого токового компаундирования (см. рис. 14, а) суммирование происходит на стороне постоянного тока. В результате фаза тока по отношению к напряжению не учитывается, поэтому ток возбуждения генератора не зависит от коэффициента мощности нагрузки, а определяется только значениями напряжения и тока статора. Такая схема обеспечивает точность лишь ±10%. К ее недостаткам можно также отнести наличие двух выпрямителей.

аб Рис. 14. Принципиальные схемы прямого компаундирования: а – токового; б – фазового; СГ – синхронный генератор; ТТ – трансформатор тока; ТН – трансформатор напряжения; В – выпрямитель; Zк – компаундирующее сопротивление

Суммирование сигналов возбуждения, пропорциональных току статора и напряжению генератора, в схеме прямого фазового компаундирования (см. рис. 14, б)происходит на стороне переменного тока, то есть с учетом фазы между напряжением и током. Геометрическое суммирование должно выполняться так, чтобы в режиме активной нагрузки угол между составляющими векторами был близок к 90° и уменьшался бы с увеличением значения φ, достигая при φ = 90° (индуктивная нагрузка) значения, близкого нулю. В этом случае ток возбуждения будет возрастать с изменением I и cos φ именно таким образом, как это необходимо нормальному синхронному генератору при сохранении его напряжения неизменным. Такое суммирование можно обеспечить как при параллельном, так и при последовательном соединении вторичных обмоток трансформаторов тока и напряжения, вводя в схему дополнительный элемент. Роль этого элемента станет ясной при прочтении материала, приводимого далее.

Суммирование сигналов при параллельном соединении вторичных обмоток трансформаторов тока и напряжения [7, 10]. На рис. 15, б приведена принципиальная схема системы при параллельном соединении вторичных обмоток тока и напряжения, причем для упрощения рассмотрен однофазный генератор.

Если пренебречь активными сопротивлениями обмоток, намагничивающими токами трансформаторов, а также активными потерями их в магнитопроводах, то расчетную схему можно представить в следующем виде (рис. 15, а).

Рис. 15. Эквивалентные схемы системы фазового компаундирования:

параллельное (а) и последовательное (б) суммирование каналов тока и напряжения; Zк – компаундирующее сопротивление; Rв – сопротивление цепи возбуждения генератора

Используя метод суперпозиций, который можно применить при сделанных допущениях, получим:

.

Полагая внутреннее сопротивление источника тока равным бесконечности, можно записать:

, (40)

где Кu – коэффициент трансформации по напряжению;

rк, xк активное и реактивное сопротивления компаундирующего элемента;

αu – начальная фаза напряжения.

Учитывая, что внутреннее сопротивление идеального источника напряжения можно считать равным нулю, получим:

, (41)

где Ki – коэффициент трансформации по току;

Полагая αu = 0 и вводя соответствующие обозначения, получим:

. (42)

Из этого выражения следует, что величину тока возбуждения определяет геометрическая сумма двух составляющих – пропорциональной напряжению генератора и пропорциональной току его нагрузки. При этом характер суммирования зависит от Zк.

При отсутствии компаундирующего сопротивления ток возбуждения генератора будет определять только составляющая канала напряжения и нормальная работа системы окажется невозможной. По этой причине величина Zк и названа компаундирующим сопротивлением.

Можно сравнить два крайних режима работы генератора: активная (φ = 0) и реактивная (индуктивная, φ = 90°)нагрузки. Сравнение проведено при разных видах компаундирующих элементов в системах возбуждения: индуктивность (дроссель, φк = 90°) и активное сопротивление (φк = 0).

1. Активная нагрузка при φ = 0:

2. Реактивная (индуктивная) нагрузка при φ = 90°:

в
а

Рис. 16. Векторные диаграммы параллельного соединения каналов тока и напряжения: а и в – компаундирующий элемент дросселя; б и г – активное сопротивление; а и б – активная нагрузка генератора; в и г – индуктивная нагрузка генератора

Таким образом, в случае использования в качестве компаундирующего элемента идеальной реактивной катушки (rк = 0, φк = 90°) составляющие канала тока и напряжения в режиме активной нагрузки генератора образуют прямой угол. При индуктивной нагрузке оба вектора расположены на одной прямой, геометрическое суммирование переходит в арифметическое.

Если использовать в качестве компаундирующего элемента активное сопротивление, то составляющие при чисто индуктивной нагрузке будут ортогональны, а при нагрузке с φ = 0 совпадут по фазе, то есть ток возбуждения, обеспечиваемый системой, будет снижаться с уменьшением коэффициента мощности. Это находится в противоречии с задачей регулирования. Следует отметить, что в трехфазных системах возможно использование активных сопротивлений в качестве компаундирующих элементов. Однако при этом необходимо обеспечить соответствующее подключение к фазам генератора трансформаторов тока и напряжения. Ниже такая схема будет рассмотрена на рис. 19.

Система может правильно действовать также при использовании вместо дросселя конденсатора, однако в этом случае необходимо переключать какую-либо обмотку одного из трансформаторов.

Из сказанного выше следует, что точность регулирования во многом зависит от значения φк: с его уменьшением будет возрастать погрешность регулирования. В частности, при φк = 45° значения тока возбуждения в режиме активной и индуктивной нагрузок оказываются равными. Реальные компаундирующие элементы из-за неизбежных активных потерь имеют |φк |

Дата добавления: 2016-02-02 ; просмотров: 11012 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Возбуждение синхронных генераторов

Обмотки роторов синхронных генераторов получают питание от специальных источников постоянного тока, называемых возбудителями.

Мощность возбудителей составляет 0,3-1% мощности генератора, а номинальное напряжение — от 100 до 650 В. Чем мощнее генератор, тем обычно больше номинальное напряжение возбуждения.

Современные схемы возбуждения кроме возбудителя содержат большое количество вспомогательного оборудования. Совокупность возбудителя, вспомогательных и регулирующих устройств принято называть системой возбуждения.

Электрическое соединение возбудителя с обмоткой ротора генератора выполняется преимущественно при помощи контактных колец и щеток. Созданы и применяются бесщеточные системы возбуждения.

Системы возбуждения должны быть надежными и экономичными, допускать регулирование тока возбуждения в необходимых пределах, быть достаточно быстродействующими, а также обеспечивать потолочное возбуждение при возникновении аварии в сети.

Регулируя ток возбуждения, изменяют напряжение синхронного генератора и отдаваемую им в сеть реактивную мощность. Регулирование возбуждения генератора позволяет повысить устойчивость параллельной работы.

При глубоких снижениях напряжения, которые имеют место, например, при коротких замыканиях, применяется форсировка (быстрое увеличение) возбуждения генераторов, что способствует прекращению электрических качаний и сохранению устойчивости параллельной работы генераторов. Кроме того, быстродействующее регулирование и форсировка возбуждения повышают надежность работы релейной защиты и облегчают условия самозапуска электродвигателей собственных нужд электростанций.

Рис.1. Изменение напряжения возбуждения при форсировке

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V = 0,632(Uf,пот — Uf,ном) / Uf,номt1 (рис.1), и отношение потолочного напряжения к номинальному напряжению возбуждения Uf,пот / Uf,ном = kф — так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь kф≥2, а скорость нарастания возбуждения не менее 2 1/с. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 1/с для гидрогенераторов до 4 MBА включительно и не менее 1,5 1/с для гидрогенераторов больших мощностей.

Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляется более высокое требование (kф=3-4, скорость нарастания возбуждения до 10Uf,ном в секунду).

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов 800-1000 МВт принято время 15 с, 1200 МВт — 10 с (ГОСТ533-85Е).

Системы возбуждения генераторов можно разделить на две группы: независимое возбуждение и самовозбуждение (зависимое возбуждение).

К первой группе относятся все электромашинные возбудители постоянного и переменного тока, сопряженные с валом генератора. Вторую группу составляют системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы. К этой группе могут быть отнесены системы возбуждения с отдельно установленными электромашинными возбудителями, приводимыми во вращение электродвигателями переменного тока, которые получают питание от шин собственных нужд электростанций.

Независимое возбуждение генераторов

Независимое возбуждение генераторов получило наибольшее распространение. Основное достоинство этого способа состоит в том, что возбуждение синхронного генератора не зависит от режима электрической сети и поэтому является наиболее надежным.

На генераторах мощностью до 100 МВт включительно применяют, как правило, в качестве возбудителя генератор постоянного тока, соединенный с валом синхронного генератора (рис.2).

Рис.2. Принципиальная схема независимого электромашинного возбуждения генератора

Возбуждение самого возбудителя выполнено по схеме самовозбуждения (обмотка возбуждения возбудителя LGE питается от якоря самого возбудителя). Регулирование возбуждения возбудителя осуществляется вручную шунтовым реостатом RR, установленным в цепи LGE, или автоматически регулятором возбуждения АРВ.

Недостатки системы возбуждения с генератором постоянного тока определяются в основном недостатками самого возбудителя. Одним из недостатков является сравнительно невысокая скорость нарастания возбуждения, особенно у возбудителей гидрогенераторов, которые имеют низкую частоту вращения (V=1-2 1/с).

Другой недостаток рассматриваемой системы возбуждения характерен для турбогенераторов, имеющих большую частоту вращения. Он обусловлен снижением надежности работы генератора постоянного тока из-за вибрации и тяжелых условий работы щеток и коллектора (условий коммутации).

Для турбогенераторов мощностью выше 165 МВт мощность возбуждения становится настолько значительной, что выполнить надежно работающий генератор постоянного тока на частоту вращения 3000 об/мин по условиям коммутации становится затруднительным.

Для снижения частоты вращения возбудителя с целью повышения надежности его работы иногда выполняют соединение возбудителя с валом генератора через редуктор. Такая система была применена для ряда турбогенераторов, в том числе и для генераторов ТГВ-300 и ТВМ-300. Недостатком этой системы возбуждения является наличие дополнительной механической передачи.

Для возбуждения крупных генераторов в СССР применяются системы возбуждения с полупроводниковыми выпрямителями.

В системе возбуждения с использованием полупроводниковых выпрямителей с валом турбогенератора сочленен вспомогательный генератор, напряжение которого выпрямляется и подводится к обмотке ротора турбогенератора (рис.3).

Рис.3. Принципиальная схема высокочастотного возбуждения турбогенератора

В качестве вспомогательного генератора применяется высокочастотный генератор индукторного типа. Такой генератор не имеет обмотки на вращающемся роторе, что повышает его надежность в эксплуатации. Повышенная частота (500 Гц) позволяет уменьшить габариты и повысить быстродействие системы возбуждения.

Индукторный высокочастотный генератор-возбудитель ВГТ имеет три обмотки возбуждения, расположенные вместе с трехфазной обмоткой переменного тока на неподвижном статоре. Первая из них LGE1 включается последовательно с обмоткой ротора основного генератора LG и обеспечивает основное возбуждение ВГТ. Благодаря включению LGE1 последовательно с обмоткой ротора основного генератора обеспечивается резкое увеличение возбуждения ВГТ при коротких замыканиях в энергосистеме вследствие броска тока в роторе. Обмотки IGE2 и LGЕЗ получают питание от высокочастотного подвозбудителя GEA через выпрямители. Подвозбудитель (высокочастотная машина 400 Гц с постоянными магнитами), как и вспомогательный генератор ВГТ, соединен с валом турбогенератора.

Регулирование тока в LGE2 и LGE3 осуществляется с помощью двух устройств — соответственно регуляторов электромагнитного типа АРВ (автоматический регулятор возбуждения) и УБФ (устройство бесконтактной форсировки возбуждения).

Устройство АРВ обеспечивает поддержание напряжения генератора в нормальном режиме работы изменением тока в обмотке LGE2. Устройство УБФ обеспечивает начальное возбуждение генератора и его форсировку при снижении напряжений более чем на 5%.

Высокочастотная система возбуждения обеспечивает kф=2 и скорость нарастания напряжения возбуждения не менее 2 1/с.

Рис.4. Принципиальная схема независимого тиристорного возбуждения генераторов

Принципиальная схема системы независимого тиристорного возбуждения (ТН) представлена на рис.4. На одном валу с генератором G располагается синхронный вспомогательный генератор GE, который имеет на статоре трехфазную обмотку с отпайками. В схеме, показанной на рис.4, имеются две группы тиристоров: рабочая VS1 и форсировочная VS2. На стороне переменного тока они включены на разное напряжение, на стороне постоянного тока — параллельно. Возбуждение генератора в нормальном режиме обеспечивает рабочая группа тиристоров VS1, которые открываются подачей на управляющий электрод соответствующего потенциала.

Форсировочная группа при этом почти закрыта. В режиме форсировки возбуждения тиристоры FS2, питающиеся от полного напряжения вспомогательного генератора, открываются полностью и дают весь ток форсировки. Рабочая группа при этом запирается более высоким напряжением форсировочной группы.

Рассмотренная система имеет наибольшее быстродействие по сравнению с другими системами и позволяет получить kф>2. Системы независимого тиристорного возбуждения нашли широкое применение. Ранее, до освоения отечественной промышленностью производства тиристоров достаточной мощности, по аналогичным схемам выполнялись схемы ионного независимого возбуждения (ИН), где применялись ртутные вентили с сеточным управлением.

Все генераторы с рассмотренными выше возбудителями имеют специальную конструкцию для подвода тока к обмотке ротора. Она представляет собой контактные кольца на валу ротора, к которым ток подводится с помощью щеток. Такая контактная система недостаточно надежна. Этот недостаток особенно проявляется при токах возбуждения 3000 А и более (генераторы мощностью 300 МВт и больше).

Перспективной, особенно для турбогенераторов большой мощности, является система бесщеточного возбуждения, не обладающая указанными недостатками. В этой системе возбуждения, сущность которой поясняет рис.5, нет подвижных контактных соединений.

Рис.5. Принципиальная схема бесщеточного возбуждения генераторов

Источником энергии для питания обмотки ротора LG является вспомогательный синхронный генератор GE. Этот генератор выполнен по типу обратимых машин, т.е. обмотка переменного тока расположена на вращающейся части, а обмотка возбуждения неподвижна. Возбуждение генератора GE осуществляется от возбудителя GEA.

Ток от вращающейся обмотки переменного тока вспомогательного генератора подводится через проводники, закрепленные на валу, к вращающемуся полупроводниковому (обычно кремниевому) выпрямителю. Выпрямленный ток подводится непосредственно к обмотке возбуждения основного генератора.

Регулирование тока возбуждения в обмотке ротора LG производится изменением тока в обмотке возбуждения вспомогательного генератора LGE.

Вращающийся полупроводниковый преобразователь VD снаружи закрывается звукопоглощающим кожухом.

Система бесщеточного возбуждения интенсивно совершенствуется и является перспективной для генераторов всех типов, особенно для турбогенераторов большой мощности (300-1200 МВт).

Системы самовозбуждения

Системы самовозбуждения менее надежны, чем системы независимого возбуждения, поскольку в них работа возбудителя зависит от режима сети переменного тока. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих случаях должна обеспечить форсировку тока в обмотке ротора генератора.

Рис.6. Принципиальная схема зависимого электромашинного возбуждения

Принципиальная схема возбуждения синхронного генератора с электромашинным возбудительным агрегатом показана на рис.6. Возбудительный агрегат состоит из асинхронного двигателя М, питающегося от шин собственных нужд электростанции и генератора постоянного тока GE. Для повышения надежности работы возбудительного агрегата при форсировке возбуждения асинхронный двигатель, вращающий возбудитель GE, выбирается с необходимой перегрузочной способностью.

Такие возбудительные агрегаты получили широкое распространение на электростанциях в качестве резервных источников возбуждения.

Рис.7. Принципиальная схема полупроводникового самовозбуждения

Один из возможных вариантов схем самовозбуждения с полупроводниковыми преобразователями представлен на рис.7.

Основными элементами схемы являются: две группы полупроводниковых преобразователей — неуправляемые вентили VD и управляемые VS, трансформатор силового компаундирования ТА и выпрямительный трансформатор ТЕ.

Неуправляемые вентили VD получают питание от трансформаторов ТА, вторичный ток которых пропорционален току статора генератора, управляемые вентили VS получают питание от трансформатора ТЕ, вторичное напряжение которого пропорционально напряжению генератора.

Вентили VD, ток которых пропорционален току статора генератора, обеспечивают возбуждение машины при нагрузке и форсировку возбуждения при коротких замыканиях. Мощность вентилей VS рассчитывают таким образом, чтобы она была достаточна для возбуждения генераторов на холостом ходу и для регулирования возбуждения в нормальном режиме. В номинальном режиме неуправляемые вентили обеспечивают 70-80% тока возбуждения генератора. При надлежащем выборе параметров система полупроводникового самовозбуждения по своим свойствам приближается к системе независимого тиристорного (ионного) возбуждения и поэтому применяется на мощных синхронных машинах. Ранее промышленность широко выпускала системы ионного самовозбуждения с ртутными вентилями.

Источник

Читайте также:  Ремонт генератора вольво s60
Adblock
detector