Меню

Выходной каскад dds генератора

Выходной каскад генератора

Здравствуйте коллеги! Собираю себе генератор, на DDS синтезаторе AD9850 и запнулся на выходном каскаде. Суть в чем, сама микросхема, способна выдавать примерно 1V переменного напряжения, а если мне нужно больше или меньше, как быть то?
И еще вопрос, как правильно снимать напряжение для измерения амплитуды.
Друзья, помогите, пожалуйста, со схемкой.
Спасибо.

На работу устройства в целом, пока не обращайте внимания, программа в стадии написания.

gudzon-m, практически никогда больше вольта на 50 Омах и не требуется. Более чем достаточно даже 0,5 В. Прблема, обычно в том, как получить достоверно — малые значения напряжения на выходе.

Я не согласен. Если, например, использовать генератор в качестве ГПД при экспериментах со смесителями на диодах, то понадобится порядка полутора вольт на нагрузке 50 Ом. Я бы порекомендовал одну из схем по Рэду на транзисторе КТ610 или КТ939. А чтоб получить малые напряжения — можно сделать выходной аттенюатор по схеме Скрыпника из его брошюры «Приборы для контроля и налаживания радиолюбительской аппаратуры».

Какой то смысл в этом конечно есть. Но я предпочитаю, если понадобится больше, чем есть у генератора, — то собрать внешний усилитель. Например в своё время так делал в ВЧ мостике для измерения антенн. Ну а в общем хозяин — барин. Как сочтёт нужным для себя, так и сделает.

Что меня прикалывает нынче на форуме так это ответы на вопрос как сделать то что нужно- зачем то начинают отвечать про то что не спрашивали и убеждать что тебе это не нужно:crazy:

А по теме одна микросхема от аналог девайс решит проблему. Их выбор сейчас достаточный. Например как сделано в NWT7 тут http://www.asobol.ru/moi-konstrukcii. ix-from-ub3taf Там же смотрите как регулируется уровень системой АРУ. Точно так же можно регулировать с ЦАП микроконтроллера используя возможность самой AD9850 + аттенюаторами на выходе. Я себе в ГСС&ГКЧ приставке к осциллографу поставил один на 16дБ на реле и один плавный как в современных тв усилителях. Они встречаются на 50ом но не распространены особо. сумарно 30 дБ мне хватает. На выходе у меня 1,2 вольта на 1мГц и 1 вольт на 40мГц. Выше там уже жесть а не сигнал с AD9850.
Вложение 217235

PS: хотя я могу до 1 ватта выдавить с ГСС. У меня там OPA2674. Чтоб не пропадала зря))

Да уж, отговаривать меня не нужно. Хочу плавную регулировку и все тут, но вопрос, как правильно измерять то, что я плавно нарегулировал?
Спасибо.

Источник

Функциональный DDS генератор на базе микросхемы AD9833

AD9833

На страницах сайта Радиолоцман, в разделе «Схемы», опубликовано множество схем DDS генераторов, от простых, на одном микроконтроллере, до сложных на базе ПЛИС с богатыми функциональными возможностями. Мы рассмотрим еще одну конструкцию такого прибора, функцию DDS синтеза аналогового сигнала в котором выполняет специализированная микросхема AD9833, производства компании Analog Devices, являющейся одним из лидеров в этой области.

Основные характеристики генератора:

  • Выходная частота от 1 Гц до 5 МГц;
  • Точность 0.1 Гц;
  • Форма выходного сигнала: прямоугольные, треугольные, синус;
  • Возможность регулировки скважности импульсов;
  • 5 В ТТЛ выход;
  • Аналоговый выходной сигнал с размахом от +15 В до –15 В;
  • Возможность подстройки постоянного смещения в пределах от +15 В до –15 В;
  • Пользовательский интерфейс: двухстрочный ЖК индикатор и 16-кнопочная клавиатура.

Прямой цифровой синтез (DDS) – метод, позволяющий получить аналоговый сигнал за счет генерации временной последовательности цифровых отсчетов и их дальнейшего преобразования в аналоговую форму посредством цифро-аналогового преобразователя. Так как сигнал изначально синтезируется в цифровой форме, такое устройство может обеспечить быстрое переключение частоты, высокое разрешение по сетке частот, работу в широком диапазоне частот. На сегодняшнем уровне развития схемотехники DDS синтезаторы представляют собой очень компактные микросхемы с низким потреблением.

Выбор микросхемы AD9833 основан на следующих ее преимуществах:

  • низкая стоимость,
  • малое потребление,
  • последовательный интерфейс управления,
  • простые команды,
  • минимальное количество необходимых внешних компонентов,
  • высокая точность выходного сигнала.

Расположение выводов микросхемы AD9833

В качестве источника тактовых импульсов для микросхемы синтезатора необходимо использовать осциллятор со встроенным генератором, простой кварцевый резонатор не подходит для использования совместно с микросхемой. В техническом описании на микросхему указано значение тактовой частоты 25 МГц, но автор применил генератор на 50 МГц, при тестировании устройства никаких проблем не было выявлено.

Прибор снабжен ЖК индикатором, клавиатурой для управления и настройки и переменными резисторами для регулирования уровня, смещения и симметрии. Управление микросхемой DDS синтезатора и всей периферией осуществляет микроконтроллер Atmel AVR ATmega32.

Условно схема DDS генератора разбита на несколько частей: схема питания, микроконтроллерная часть, модуль DDS на микросхеме AD9833, выходная аналоговая часть и пользовательский интерфейс.

Схема питания построена на интегральных регуляторах напряжения и обеспечивает двуполярное напряжение ±15 В для выходной аналоговой части и напряжение +5 В для питания микроконтроллера и периферии.

Читайте также:  Диод в генератор классики

Микроконтроллер тактируется от встроенного RC осциллятора 8 МГц. Стандартный двухстрочный ЖК индикатор на базе контроллера HD44780 подключен к порту C (Port C) микроконтроллера по 4-битному интерфейсу. Резистор R1 предназначен для регулировки контрастности. К сигнальной линии PC7/TOSC2 подключен звуковой излучатель (буззер), который используется для звукового оповещения пользователя при переключении режимов и настройке. Потенциометр R2, подключенный к каналу ADC0 встроенного АЦП микроконтроллера, используется для цифровой регулировки уровня выходного аналогового сигнала. Регулировка уровня выполнена на базе микросхемы цифрового потенциометра MCP41010 (см. схему выходной аналоговой части), которая управляется микроконтроллером по интерфейсу SPI.

Схема микроконтроллерной части DDS генератора

Управление микросхемой DDS синтезатора осуществляется по линиям микроконтроллера PD0 (DDSDATA), PD1 (DDSFSYNC), PD2 (DDSCLK). Микросхема DDS, осциллятор и несколько пассивных компонентов обвязки конструктивно составляют отдельный подключаемый модуль, что позволит использовать его в других конструкциях или в экспериментах.

Схема DDS модуля генератора на микросхеме AD9833

К аналоговой выходной части генератора предъявляются особые требования, т.к. не так просто усилить сигнал с амплитудой 400 мВ до уровня ±15 В, с выходным током 300 мА на частоте 5 МГц. Поэтому был применен сверхбыстродействующий операционный усилитель LM7171 с обратной связью по напряжению и схема двухтактного транзисторного усилителя мощности. Блокировочные конденсаторы по питанию операционных усилителей на печатной плате должны быть расположены как можно ближе к микросхемам.

Кроме того, в зависимости от формы генерируемого сигнала (прямоугольные импульсы или синусоида) включаются разные схемы предварительного усиления и нормализации сигнала. Переключение этих схем выполнено на реле, которое управляется микроконтроллером, в зависимости от режима работы генератора (транзисторы Q6 и Q7).

На выводе микроконтроллера PD7 генерируются прямоугольные импульсы, которые поступают через буфер на микросхеме 74HC14 на ТТЛ выход генератора.

Схема выходной аналоговой части DDS генератора

ТТЛ выход генератора

Модуль готовой матричной клавиатуры с организацией 4×4 подключается к порту B (Port B). Строки матрицы клавиатуры подключены к линиям порта PB0-PB3, столбцы – подключены к линиям PB4-PB7.

Исходный код и прошивка микроконтроллера – скачать

Источник

Выходной каскад dds генератора

USB DDS Функциональный генератор

Автор: El-Eng
Опубликовано 02.10.2013
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2013!»

Некоторое время назад обзавелся я USB осциллографом, и так мне понравился этот аппарат, что решил я заиметь ему в комплект USB генератор. Конечно, проще всего было бы его купить, но натура радиолюбителя не позволила решить этот вопрос подобным образом. В результате было разработано и изготовлено устройство, предлагаемое вашему вниманию.
Как уже ясно из названия статьи, в генераторе используется принцип прямого цифрового синтеза (Direct Digital Synthesis, DDS) выходного сигнала, а реализован генератор на микросхеме AD9834 фирмы Analog Devices. В качестве управляющего и интерфейсного устройства был выбран микроконтроллер ATtiny2313 фирмы Atmel, в котором для поддержки протокола обмена данными по шине USB была использована программная библиотека V-USB, позволяющая обойтись чисто программными средствами.

Краткие технические характеристики генератора:

  • Форма выходного сигнала: синусоидальная, треугольная, меандр
  • Диапазон частот выходного сигнала: 0.2Гц – 10МГц
  • Амплитуда выходного сигнала:
  • Синусоидального и треугольного: 0 … 2.55В
  • Меандра: 1.5 … 5.1В (положительные логические импульсы)
  • Неравномерность АЧХ выходного сигнала:
  • В диапазоне 0.2Гц – 1МГц: не более 0.1дБ
  • В диапазоне 1МГц – 10МГц: не более 2.0дБ
  • Относительная погрешность частоты выходного сигнала: 0.01%
  • Приведенная погрешность амплитуды выходного сигнала: 2%
  • Питание генератора осуществляется от шины USB

Принципиальная схема генератора приведена на Рис. 1.

Сигналы шины USB непосредственно поступают на входы микроконтроллера ATtiny2313 (U1) который обеспечивает обмен данными и управление узлами генератора. Как уже было сказано, в качестве основы генератора используется микросхема AD9834, которая подключена к микроконтроллеру через последовательный интерфейс SPI. Для обеспечения стабильности и получения максимального качества синтеза выходного сигнала, эта микросхема тактируется интегральным кварцевым генератором частотой 50МГц (U9).
Генерируемый сигнал синусоидальной или треугольной формы через восстанавливающий дифференциальный пассивный фильтр 5-го порядка поступает на вход дифференциального усилителя (U5), а оттуда на вход формирователя меандра и на выход устройства. Частота среза (11МГц) и порядок восстанавливающего фильтра были выбраны как компромисс между точностью формы выходного сигнала на верхних частотах, неравномерностью АЧХ и максимальной генерируемой частотой выходного сигнала. При необходимости, параметры этого фильтра могут быть изменены, например, для обеспечения более высокой частоты выходного сигнала, которая, теоретически, может доходить до 25МГц. Частотные характеристики выходного буферного дифференциального усилителя, выполненного на микросхеме AD8130, позволяют реализовать эту возможность.
Прямоугольный выходной сигнал (меандр) формируется из выходного сигнала при помощи формирователя, реализованного на компараторе MAX961 (U6). Сформированный меандр (положительные логические импульсы) поступает на дополнительный выход через буферный каскад на микросхеме NC7SZ04 (U3). При необходимости, формирователь меандра может быть выключен подачей уровня логической единицы на вход SHDN компаратора.
Регулировка амплитуды в описываемом генераторе обеспечивается управляемыми микроконтроллером цифровыми потенциометрами (U8 и U10), причем регулировка осуществляется “холодным способом”: амплитуда синусоидального и треугольного сигналов регулируется путем изменения задающего тока ЦАП микросхемы AD9834, а амплитуда меандра регулируется путем изменения напряжения питания выходного буфера U3. Такой подход гарантирует отсутствие влияния цепей регулировки амплитуды на равномерность АЧХ выходного сигнала.
Питание генератора осуществляется от шины USB. Необходимые для работы узлов генератора отрицательное и удвоенное положительное напряжения обеспечиваются преобразователем, выполненном на микросхеме MAX1681 (U4).
Напряжение питания 3.3В, для цифровой части генератора, обеспечивается линейным стабилизатором, реализованном на компонентах U7A–Q1A, источником опорного напряжения для него служит напряжение 2.5В формируемое микросхемой U2.

Читайте также:  Сигнал генератор с регулируемой частотой

Прежде чем перейти к описанию печатной платы, приведу несколько соображений, касающихся использованного при разработке подхода:

  • Высокочастотные и быстродействующие устройства работают значительно надежнее при наличии на печатной плате хотя бы одного слоя сплошной металлизации, соединенного с общим проводом (землей).
  • Обычно, в домашних условиях можно изготовить максимум двухстороннюю плату.
  • Металлизация переходных отверстий в домашних условиях затруднительна, а их пропайка соизмерима по трудоемкости с соединением монтажным проводом (особенно если дополнительно взять в расчет время и усилия, потраченные на правильную разводку в двух слоях).
  • Количество изготавливаемых устройств, как правило, одно-два.

Исходя из этого, при разработке печатной платы устройства одна сторона (Bottom) была использована для сплошной металлизации (“грязная” и “чистая” шины земли) а межсоединения были выполнены на стороне компонентов (Top), причем те соединения, которые не удалось развести печатными проводниками, сделаны монтажным проводом.
Печатная плата разработана для размещения в стандартном корпусе G939 (с любым индексом) фирмы Gainta. Корпус необходимо доработать – удалить батарейный отсек и проделать отверстие для разъема mini-USB.
Рисунки печатной платы для позитивного и негативного процессов (слой Top дан в зеркальном отображении) находятся в файле Fab.zip приложения. Там же содержатся список компонентов, принципиальная и монтажная схемы (монтажная схема для слоя Bottom отсутствует, поскольку на этом слое устанавливаются всего два элемента – кварцевый резонатор Y1 и ферритовая бусина L11, разделяющая “грязную” и “чистую” шины земли). В этом файле также находятся прошивка для микроконтроллера и картинка для пояснения правильной установки FUSE-битов.
Следует отметить, что принципиальная схема генератора была изменена в процессе первичной отладки экземпляра устройства, соответственно была изменена и печатная плата (заодно установлен кварцевый резонатор в более привычном корпусе). Однако экземпляр устройства с использованием модифицированной печатной платы не изготавливался. Внешний вид генератора со снятой крышкой представлен на Рис.2.

Для работы совместно с описываемым генератором была разработана управляющая программа, обеспечивающая функционирование генератора как в режиме генерации сигнала с фиксированной частотой, так и в качестве генератора качающейся частоты (ГКЧ). Программа написана на Delphi 7 и проверена на Windows XP и Windows 7. В процессе работы программа не изменяет реестр Windows и не требует для своей работы каких-либо дополнительных файлов или библиотек. Программа находится в файле 01.zip.

На Рис.3. приведено окно программы в режиме генератора фиксированной частоты.

Необходимое значение частоты генерации можно установить несколькими способами: щелчком левой кнопки мыши, установив ее указатель на нужный участок псевдологарифмической шкалы; передвинув мышью курсор в нужную позицию; используя кнопки [ ] или кнопку [Set]. Последний способ обеспечивает наиболее точную установку частоты, кроме того, он позволяет установить любую возможную частоту генерации, в том числе находящуюся вне пределов шкалы. С правой стороны расположены регуляторы амплитуды выходного сигнала, а также кнопки выбора формы выходного сигнала и разрешения выдачи сигнала прямоугольной формы. Следует отметить, что примененный способ регулировки амплитуды выходного сигнала прямоугольной формы не позволяет выдавать сигнал, меньший определенной величины (формально – менее 1.6В, реально – менее 1В). Этот факт отображается красным цветом величины амплитуды прямоугольного сигнала менее 1.6В. Для запуска генератора необходимо нажать кнопку [Run].

Окно управляющей программы в режиме ГКЧ показано на Рис.4.

Диапазон изменения частоты задается на логарифмической шкале двумя дополнительными курсорами, которые можно передвигать с помощью мыши. Закон изменения частоты может быть выбран как линейным, так и логарифмическим; изменение частоты может быть от меньшей к большей, от большей к меньшей и попеременно. Время развертки может быть установлено от 1 до 100 секунд. Имеется возможность сброса текущего цикла развертки и временной остановки (паузы). Запуск генератора, как и в предыдущем случае, осуществляется при помощи кнопки [Run].
Следует отметить, что программа работоспособна и при отсутствии генератора. В этом случае она переходит в демонстрационный режим.

Проверка работоспособности и регулировка.

Внимание! Считаю необходимым предупредить, что манипуляции с шиной USB вы производите на свой страх и риск. Хотя шина USB достаточно хорошо защищена от повреждений, а устройство не содержит узлов, способных вывести используемый компьютер из строя, вероятность такого исхода все же существует. Автор не несет никакой ответственности за последствия, наступившие в результате манипуляций, связанных с отладкой и использованием устройства.

Проверку работоспособности генератора рекомендуется проводить в такой последовательности:

  • Убедившись в отсутствии ошибок монтажа подключить устройство к шине USB.
  • Проконтролировать наличие и величину питающих напряжений:
  • P5V0: +4.5…5.5V
  • N5V0: -4.0…5.0V
  • D9V0: +7.5…9.5V
  • D3V3: +3.1…3.5V
  • Запрограммировать микроконтроллер и установить необходимую конфигурацию FUSE-битов.
  • Отключить устройство от шины USB и вновь подключить его. Должна произойти стандартная процедура установки USB HID устройства TorDDS, при этом операционная система определяет его как USB устройство ввода.
  • Запустить управляющую программу и убедиться в работоспособности устройства.
  • При помощи подстроечных резисторов R25 и R32 отрегулировать напряжения выходных сигналов так, чтобы они соответствовали уровню, отображаемому управляющей программой. Рекомендуется воспользоваться методикой, описанной ниже:
Читайте также:  Сварочный генератор linz e2w10

Отсутствие разделительных конденсаторов в тракте выходного сигнала позволило реализовать простой способ точной регулировки амплитуды выходного сигнала с использованием вольтметра постоянного напряжения, имеющегося в лаборатории каждого радиолюбителя. Для регулировки по этой методике необходимо запустить управляющую программу в режиме генерации сигнала с фиксированной частотой и при помощи кнопки [Set] задать значение частоты 0(ноль) Гц. После этого кнопка [Run] перейдет в ненажатое положение, а регуляторы амплитуд – в максимум. Кнопки выбора формы сигнала и разрешения выдачи меандра перейдут в нажатое положение. Далее следует нажать кнопку [Run]. Если все было сделано правильно, на выходах генератора установятся постоянные напряжения, соответствующие максимальным амплитудам выдаваемых сигналов. При помощи подстроечных резисторов R25 и R32 следует отрегулировать эти напряжения таким образом, чтобы на выходе канала синус/треугольник было напряжение 2.55В, а на выходе канала меандра 5.10В.

Система команд и пример управления работой генератора.

Для тех, кто решит написать собственную управляющую программу генератора или использовать его в составе измерительного комплекса, приведу описание системы команд управления генератором. Основной целью разработанной системы команд было уменьшение объема передаваемых данных в процессе работы генератора в режиме ГКЧ.
Как известно, взаимодействие с USB HID устройством осуществляется при помощи управляющих сообщений (Report). В данном случае реализовано одностороннее взаимодействие, от компьютера к устройству. Управляющее сообщение (Report) для генератора состоит из четырех байтов: идентификатора (ID), который в нашем случае должен быть всегда равен нулю, команды (Command) и двух байтов данных (Data). Поскольку в микросхеме AD9834 отсутствует возможность чтения внутренних регистров, в микроконтроллере содержатся образы этих регистров, которые используются для управления работой этой микросхемы:

  • FreqReg – 28-разрядный регистр частоты
  • PhaseReg – 14-разрядный регистр фазы
  • ControlReg – 16-разрядный регистр управления

Код команды должен быть записан в байт , а необходимые данные — в двухбайтное слово . Далее в описании команда дается в виде где X – бит байта :

— шаг по частоте. Биты DDDDDDD (7 бит) вместе с образуют 23-битный код шага по частоте в смещенном двоичном коде: нулю соответствует число 400000H, которое вычитается контроллером из входного кода, после чего результат складывается с содержимым регистра FreqReg и сохраняется в этом регистре. Далее микросхема AD9834 программируется контроллером на выдачу этой частоты, одновременно выходя из состояния сброса, если она находилась в нем перед этим.

— запись данных в FreqReg. 4 бита DDDD вместе с 16-ю битами дополняются справа 8-ю нулями, образуя 28-разрядное слово, которое записывается в регистр FreqReg. Эта команда не влияет на работу AD9834.

— запись в регистр PhaseReg. 14 младших разрядов записываются в PhaseReg, после чего PhaseReg записывается в AD9834 и происходит переключение на работу с этим значением регистра.

— запись в ControlReg. 16-разрядное слово записывается в ControlReg, при этом, если биты F и/или P равны нулю, то соответствующие биты FSEL и PSEL в ControlReg остаются без изменений. После этого значение ControlReg записывается в AD9834.

— прямая запись в AD9834. 16-разрядное слово записывается в AD9834. Содержимое регистров в микроконтроллере остается неизменным.

— установка амплитуды выходного сигнала канала синус/треугольник. Младший байт определяет значение амплитуды: 0 – минимальная амплитуда, 255 – максимальная.

— установка амплитуды выходного сигнала канала меандр. Младший байт определяет значение амплитуды: 0 – минимальная амплитуда, 255 – максимальная.

— разрешение выдачи меандра. Если младший байт равен нулю – меандр отключен, в любом другом случае – включен.

— управление светодиодом. Если младший байт равен нулю – светодиод отключен, в любом другом случае – включен.

В файле 02.zip приведен исходный код примера управления работой генератора. Этот пример, написанный на Delphi 7, основан на коде, опубликованном пользователем pvabox на форуме VINGRAD.
Для связи с генератором использован компонент JvHidControllerClass, который разработал Robert Martin Marquardt и который входит в состав свободно распространяемой библиотеки JEDI. Этот же компонент использован и в управляющей программе TorDDS.

В заключение приведу несколько осциллограмм работы генератора, полученных при помощи осциллографа DSO-X 3034A компании Agilent.

Минимальная генерируемая частота 0.18626Гц.Следует отметить, что для синусоидального сигнала под термином “амплитуда” подразумевается размах.

Частота генерации – 1МГц. Обратите внимание на равенство амплитуд с минимальной генерируемой частотой.

Частота генерации – 10МГц. Амплитуда синусоидального сигнала уменьшилась, но форма – вполне удовлетворительная. Сказывается действие восстанавливающего фильтра.

Источник

Adblock
detector