Меню

Двухканальный генератор прямоугольных импульсов

Генератор импульсов на TL494

Генератор импульсов используется для лабораторных исследований при разработке и наладке электронных устройств. Генератор работает в диапазоне напряжений от 7 до 41 вольта ивысокой нагрузочной способностью зависящей от выходного транзистора. Амплитуда выходных импульсов может быть равна значению питающего напряжения микросхемы, вплоть до предельного значения напряжения питания этой микросхемы +41 В. Его основа — известная всем микросхема TL494, часто используемая в БП ATX.

Аналогами TL494 являются микросхемы KA7500 и её отечественный клон — КР1114ЕУ4.

Предельные значения параметров:

Напряжение питания 41В
Входное напряжениеусилителя (Vcc+0.3)В
Выходное напряжение коллектора 41В
Выходной ток коллектора 250мА
Общая мощность рассеивания в непрерывном режиме 1Вт
Рабочий диапазон температур окружающей среды:
-c суффиксом L -25..85С
-с суффиксом С .0..70С
Диапазон температур хранения -65…+150С

Принципиальная схема устройства

Печатная плата генератора на TL494 и другие файлы находятся в отдельном архиве .

Детали генератора импульсов

Конденсаторы С1-С4 времязадающей цепи выбираются под необходимый частотный диапазон и емкость их может быть от 10 микрофарад для инфранизкого поддиапазона до 1000 пикофарад — для наиболее высокочастотного.

При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но
разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора – также неудовлетворительно медленно. Для этих целей применяется независимый комплементарный повторитель.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Двухканальный модуль ШИМ генератора импульсов XY-PWM

Китайские цифровые модули ШИМ контроллеров (PWM) стали заметно доступнее по цене, но правильный выбор модуля, который будет делать именно то что нужно, остаётся актуальным. Вот несколько тестов и советов, которые помогут в процессе подбора подобного устройства избежать ошибок.

Для примера возьмём самый популярный, недорогой и компактный 2-канальный модуль PWM, описанный на Али как «XY-PWM 2-канальный регулируемый генератор импульсов ШИМ с цифровым светодиодным дисплеем».

Это крохотный 2-канальный модуль генератора ШИМ с переменной частотой от 1 Гц до 150 кГц и рабочим циклом от 0% до 100%. Частотой ШИМ и рабочим циклом каждого канала можно управлять независимо с помощью кнопочных переключателей, имеющихся на плате. Модуль может питаться от внешнего источника постоянного тока 5-30 В, но также оснащён и micro-USB 5 В. Он дополнительно предоставляет возможность настраивать определенные параметры импульса извне, через стандартный последовательный COM интерфейс.

Давайте ознакомимся с его основными характеристиками:

  • Два независимых ШИМ с переменной частотой и рабочим циклом.
  • Параметры настраиваются через последовательный протокол
  • Рабочее напряжение: 5 — 30 В постоянного тока.
  • Поддерживает micro-USB 5V
  • Диапазон частот: 1 Гц

150 кГц

  • Точность частоты: около 2%.
  • Нагрузочная способность сигнала: выходной ток 8-30 мА
  • Выходная амплитуда: 5 В pp по умолчанию
  • Рабочий цикл: 0%

    Управление модуля имеет три кнопки — SET, UP, DOWN. Быстрое нажатие кнопки SET переключает все четыре параметра (FA1: частота PWM1, DU1: рабочий цикл PWM1, FA2: частота PWM2, DU2: рабочий цикл PWM2), а долгое нажатие позволяет изменять частотный диапазон. Кнопки UP и DOWN можно использовать для изменения текущих параметров.

    Обратите внимание, что выбор частоты ШИМ делится на три диапазона:

    1. XXX (без десятичной точки): наименьшая единица измерения — 1 Гц. Диапазон от 1 Гц до 999 Гц.
    2. X (одна десятичная точка): Минимальная единица измерения — 0,1 кГц. Диапазон от 0,1 кГц до 99,9 кГц.
    3. XX (три десятичных знака): наименьшая единица — 1 кГц. Диапазон от 1 кГц до 150 кГц.

    Последовательные параметры (скорость 9600 бод):

    • Биты данных: 8
    • Стоповый бит: 1
    • Бит четности: Нет
    • Управление потоком: Нет

    Формат команды для установки частоты PWM — «S1FXXXT», что означает «Установите частоту PWM1 на XXX Гц (от 001 Гц до 999 Гц). И «S1DXXXT» применимо для установки рабочего цикла (Установите рабочий цикл PWM1 на XXX (001

    • S1: PWM1
    • S2: PWM2
    • F: частота
    • D: Рабочий цикл
    • T: знак конца

    Конечно можно построить простой генератор ШИМ с помощью таймера 555, но все же для этого потребуется частотомер или осциллограф, чтобы настроить их правильно, а здесь уже всё готово.

    Компоненты, расположенные рядом со входом модуля, — это один диод Шоттки SS34 (защита от обратного входного питания) и один стабилизатор напряжения HT7150-1 LDO (5 В / 30 мА). Это позволяет безопасно подавать источник постоянного тока в диапазоне 5-30 В через точки DC IN (VIN + и VIN-). Также можно включить модуль через разъем micro-USB, предпочтительно от источника питания USB или внешнего аккумулятора мобильного телефона. В любом случае, вход питания USB должен быть стандартным, с чистыми 5 В, поскольку на плате нет ничего что могло бы стабилизировать это напряжение. Трехзначный индикатор представляет собой красный светодиодный дисплей с общим катодом (3631AS).

    Далее следует пара транзисторов MMBT3904L, вставленных на выводах импульсного выхода микроконтроллера. Тут есть два независимых выходных канала ШИМ, но они используют одну и ту же общую / заземляющую (0 В) линию.

    Принципиальная схема ШИМ генератора XY-PWM

    Теперь становится ясно, что каждый транзистор работает как «буфер», который инвертирует фактический сигнал импульсного выхода микроконтроллера. С резистором нагрузки коллектора 620 Ом можно ожидать выходного сигнала с широтно-импульсной модуляцией уровня 5 В, который может управлять внешней нагрузкой с 8 мА максимального тока на канал.

    Для теста использовался USB-блок питания. Сначала установили оба канала ШИМ на 25 кГц (50%) и наблюдали за выходным сигналом на осциллографе.

    Канал осциллографа 1 (желтый) на PWM1, а канал осциллографа 2 (синий) — на базу Q1 (то есть первый вывод импульсного выхода микроконтроллера).

    Возвращаясь к двухканальным сигналам ШИМ заметим, что такое дело будет полезно во многих случаях, таких как управление шаговыми двигателями, управление бесколлекторными двигателями постоянного тока, преобразование постоянного напряжения. Поскольку модуль XY-PWM можно использовать для генерации двух сигналов ШИМ с одинаковой (но переменной) частотой и рабочим циклом, результирующие прямоугольные волны с двухфазным смещением могут сыграть важную роль в чередующихся / фазосдвинутых сигналов.

    Согласно описанию, двухканальный ШИМ-модуль даже совместим с серией промышленных двухфазных гибридных шаговых сервоприводов RMCS-111x.

    Кстати, разъем встроенного 4-контактного интерфейса напоминает знакомый интерфейс программатора SWIM для микроконтроллеров STM. Чаще всего STM8S003K составляет основу такого двухканального модуля ШИМ.

    Другое испытание проводилось с небольшим вентилятором BLDC на 12 В / 100 мА, просто подключили его к каналу PWM1 (25 кГц) двойного модуля PWM (с питанием от БП) через один модуль МОП IRF530 (не логика), как показано на схеме подключения. Использовали обычный метод «фиксированной частоты и переменного рабочего цикла» для управления скоростью вентилятора, и установка показала отличную производительность.

    Вот выходной сигнал ШИМ 20 кГц (50%) (x2), обработанный двухканальным модулем ШИМ и снятый USB-осциллографом.

    Выходное напряжение ШИМ модуля находится на уровне 5 В, потому что транзисторы драйвера питаются от встроенного стабилизатора напряжения 5 В / 30 мА LDO. И простое вырезание одной дорожки сделает ее готовой к выходам ШИМ более высокого уровня.

    После этого можно подать более высокое напряжение между контактными площадками V + и GND. Если это вход 12 В, то получим выходы ШИМ с уровнем 12 В, но убедитесь что есть 100% изоляция между V + и дорожкой 5 В, иначе схема может сгореть. В общем подобный блок прекрасная основа более сложных приборов и электрических исполнительных механизмов.

    Источник

    Очень простой генератор из ардуины.

    ТехнарьКто

    Иногда бывает нужно подать сигнал определённой частоты, а специального устройства под рукой нету. Благодаря появлению микроконтроллеров теперь можно при необходимости хоть на коленке в поле сделать генератор. Вот скетч для генератора с регулируемой частотой, пользуюсь давно и успешно.

    Генератор частоты от 1 Гц до 8 000 000 Гц. Вырабатывает однополярный меандр со скважность 2. По русски это значит длительность импульса и длительность паузы между импульсами равны, а сигнал имеет прямоугольную форму.

    Вопрос: Что такое генератор?
    Ответ: Это устройство которое преобразует энергию источника питания в энергию выходных электрических импульсов заданной частоты и формы.

    Вопрос: А мне то это зачем?
    Ответ: Очень хороший вопрос, ответ на который Вы вряд ли найдете в интернете. Вы сможете проверить работоспособность усилителя. Проверить диапазон воспроизводимых усилителем частот. Проверить целостность динамика, даже без усилителя с помощью только этого генератора. Найти обрыв силового провода в проводке, обрыв телефонного провода, обрыв в электропроводке автомобиля. Правда кроме генератора нужен будет еще и детектор сигнала. Для поиска обрыва проводки генератор присоединяют к исследуемой линии, а частота генератора лежит в пределах килогерца. Поиск производится детектором. По резкому уменьшения громкости звука, определяется место разрыва. Генератор позволит проверить работу микропроцессора ардуины или PIC контроллера при использовании его как тактового. Можно сделать звуковую сирену с тональностью сигнала который Вам нравиться. Сделать передатчик с использованием генератора в качестве задающего несущую частоту. Настроить фильтр низкой частоты, настроить фильтр высокой частоты, настроить режекторный фильтр. Фильтры используют в цветомузыке, в каскадах радиоприемников, в импульсной технике для защиты от помех, для очистки информационного сигнала от сопутствующих работе помех. Подать сигнал низкой частоты на устройства работающие на шине I2C и посмотреть обмен информации хоть с помощью вольтметра. С помощью генератора можно измерять индуктивность и емкость с очень высокой точностью. Да и вообще сейчас трудно назвать современное электронное устройство в котором нет генератора и для быстрой проверки работы устройства не требовался бы внешний генератор, хотя бы такой. Кроме этого при использовании генератора показывающего все знаки неизменно возникнет вопрос, почему во всех генераторах частота немного отличается. Поэтому этот генератор позволит заинтересоваться вопросом точности и что же такое ppm, ppb зачем и когда это нужно.

    Подначка: Да я программу генератора на компьютере запущу. Че мне заморачиватся.
    Ответ: Программы генераторов на компьютере для звуковых карт ограничены звуковой частотой. Мне будет очень любопытно узнать, как вы с генерируете сигнал хотя бы в мегагерц 1 000 000 Гц с помощью звуковой карты. С помощью этого генератора — легко.

    Теперь Вы знаете зачем нужен генератор. Практические примеры использования выходят за рамки данного сообщения. Здесь только про создание самого генератора.

    Итак схема.

    Я же обещал очень простой генератор

    На выход сигнала можно смело цеплять динамик для проверки его работоспособности. Без конденсатора можно сразу подавать сигнал на микроконтроллеры и электронные схемы у которых 5V питание.

    Из терминала послать требуемую частоту в герцах. Только цифру. В ответ в терминал будет выведена частота в герцах, а на выходе генератора появиться сигнал с частотой как в терминале.
    Пример для частоты 200 кГц. В терминале набирал 200000

    Пример для частоты 8 мегагерц. В терминале набирал 8000000

    Меандр кривой из за малого частотного диапазона осциллографа. Но это совершенно другой вопрос.

    Надо понимать, что выводимая в терминале частота будет отличаться от реальной. Выводимая в терминале частота была бы при идеальном кварце работающем точно на частоте 16 000 000 Гц. У ардуин такого не бывает. Если кому интересно, то могу написать о кварцевых резонаторах. Для понимания, почему в ардуино не бывает точных кварцев.

    PS Поскольку в целом я далек от программирования но весьма не плохой электроник, вынужденный современностью разбираться в коде разных программ, то по большей части использую приборы которые кто то уже делал. Зачастую модифицирую, иногда и очень сильно, под свои потребности и использую. При этом считаю, что соблюдение авторства все равно должно быть. Код обычно беру из общедоступных источников, когда авторы сами выложили для использования другими. Поскольку найти конструкции бывает затруднительно, а при повторении конструкций бывают малопонятные особенности, о которых Вы можете и не найти информации, то считаю, что выложить и подробно описать для чего это надо и как заставить работать ту или иную конструкцию — это нормально.

    Источник

  • Читайте также:  Как проверить генератор рено эспейс
    Adblock
    detector