Меню

Генератор без торможения ротора под нагрузкой

Электродвигатели и генераторы нового типа

Электродвигатели и генераторы нового типа

Разработаны принципиально новые электродвигатели и электрогенераторы, могущие производить большую мощность на выходе, чем потребляют для своего привода. На первый взгляд, кажется, что это «вечный двигатель», и такого быть не может. Но это не так. Была разработана теория построения подобных устройств, проведены практические опыты, доказавшие правильность теории. Используется необычное взаимодействие магнитных полей, хотя все происходит согласно законам классической физики. Но эти законы грамотно используются, а избыточная энергия извлекается из внутренней структуры ферромагнетика (или постоянного магнита). При этом запаса энергии хватит на многие десятки лет работы устройства на максимальной мощности. Рассмотрим для начала электродвигатель. Он работает на силах магнитного взаимодействия между катушками статора и ротора. Или катушками и постоянными магнитами, суть от этого не меняется. При работе двигателя, в нем всегда возникает так называемая генераторная (или противоЭДС), которая направлена навстречу напряжению источника питания двигателя. Поэтому мы вынуждены значительно увеличивать напряжение питания. А соответственно и мощность потребления двигателя. Вот данные по промышленному двигателю:

Например, серийный электродвигатель постоянного тока типа 4ПН 200S имеет следующие характеристики: мощность 60 кВт; напряжение 440 В; ток 149 А; частота вращения 3150/3500 об/мин; кпд 90,5%; длина статора 377 мм; диаметр ротора 250 мм, напряжение потерь 41,8 В; напряжение на преодоление индуцированной ЭДС 398,2 В; мощность на преодоление потерь 6228 Вт; вращающий момент (3500 об/мин) 164,6 Нм.

Получается, что если мы избавимся от противоЭДС, то для питания двигателя нужен источник напряжения не 440 вольт, а только (округленно) 42 вольта, при том же токе 150А. Поэтому потребляемая мощность при полной нагрузке составит 6300 ватт при механической выходной мощности 60 кВт.

Были проведены исследования магнитных и электрических взаимодействий, которые позволили бы уменьшить, или совершенно устранить противоЭДС, с сохранением необходимого силового взаимодействия ротора и статора, обеспечивающего неизменную выходную механическую мощность двигателя. Что позволяет конструировать двигатели, имеющие выходную механическую мощность от двух, до нескольких десятков раз большую, чем потребляемая ими электрическая. При этом сохраняется технология, материалы, оборудование, применяющиеся для производства обычных промышленных двигателей. Все это позволяет, в кратчайшие сроки и с минимальными затратами, начать выпуск энергосберегающих двигателей. Очень важно и то, что значительная часть расчетов, использующихся для двигателей старого типа, подходит и для новых. Из автомобильного генератора был изготовлен макетный образец двигателя. На нем были исследованы силовые взаимодействия магнитных полей, величины противоЭДС, проверка одного из возможных конструктивных решений. Так как пока нет блока управления (макет рассчитывался под электронный блок), самовращения получить не удалось. Была изучена только возможность вращения ротора при подаче тока (ротор поворачивался на определенный угол), после чего вручную меняли полярность питания, и ротор снова поворачивался…

Был также исследован еще один тип двигателя без противоЭДС, переделанный из коллекторного микродвигателя с постоянными магнитами. При его вращении внешним приводом, генерация тока отсутствовала. При подаче напряжения на клеммы двигателя, он начинал вращаться. Т. е была получена необратимая электрическая машина. Ток, потребляемый данным двигателем, постоянен, независимо от нагрузки и оборотов, а зависит только от напряжения питания. Это доказывает, что данная технология позволяет изготавливать двигатели без противоЭДС. Управляют такими двигателями, изменяя среднее напряжение на его клеммах, с помощью электронного коммутатора. Также разработаны и электрогенераторы нового типа, ротор которых не тормозится под нагрузкой, как в обычном генераторе. Были поставлены опыты, которые подтвердили, что данное предположение справедливо.

Но построить работающий демонстрационный образец пока не удалось. Необходима иная технология, чем для двигателя. Отсутствуют также необходимые материалы и станочное оборудование. Но тема очень перспективная, вложения в НИИОКР очень небольшие, по сравнению например с разработкой новой модели ДВС (или просто его усовершенствованием). Если взять самый простой вариант двигателя или генератора, то для изготовления достаточно совершенного демонстрационного образца, потребуется не более 30 тысяч долларов и три месяца времени. Все будет зависеть от наличия оборудования, материалов, специалистов. И выбранной конкретной конструкции двигателя или генератора для изготовления. Для изготовления промышленного прототипа, вложения разумеется возрастут в несколько раз, а срок увеличится до 6-8 месяцев.

Посмотрим теперь, что нам дадут новые двигатели и генераторы. Всем известно, что наша цивилизация существует благодаря использованию электрической энергии, которая преобразуется в другие виды энергии. Для получения электричества, в мире ежегодно расходуют сотни миллионов тонн топлива! Примерно половина этой энергии, используется для получения механической, с помощью электромоторов. Если мы уменьшим хотя бы в два раза потребляемую ими мощность, то можем сэкономить 25% всей произведенной электроэнергии. Не потребуется строить новые электростанции. Можно снизить добычу топлива и его сжигание, что благоприятно скажется на экологии. Но если использовать двигатели с более высокой эффективностью, то выигрыш будет гораздо больше. А если мы возьмем транспорт, то здесь эффект многократно больше! На транспорт расходуется топлива гораздо больше, чем на получение электроэнергии. И значительно более высококачественного. Для его получения, тоже тратится много энергии, отравляется окружающая среда. Предлагаемые двигатели, могут использоваться вместо тепловых, практически на всех видах транспорта.

Читайте также:  Генератор сидов для террарии

Уже имеются эскизные проекты двигателей для электровелосипедов, электромобилей, морских и речных судов, самолетов и вертолетов… Рассмотрим для примера работу электромобиля:
Это машина, имеющая небольшой аккумулятор(типа обычного автомобильного), генератор без торможения ротора под нагрузкой, и тягового энергосберегающего двигателя. От аккумулятора водитель запускает приводной двигатель генератора. От генератора, ток поступает на тяговый двигатель. Если взять эффективность всех этих компонентов 10(это средняя величина), то наши характеристики будут примерно такие:
От аккумулятора раскручиваем привод генератора, мощностью 1кВт(как и обычный стартер в ДВС). Данный привод вращает генератор, который выдает уже 10кВт мощности. А тяговый двигатель, из этих 10кВт выдает 100 кВт механической мощности… Если учесть разного рода потери, самопитание генератора, подзаряд аккумулятора, то получим не меньше 80 кВт. При этом, все узлы такого электромобиля просты и дешевы. Его стоимость будет раза в два-три меньше, чем автомобиля равного класса, а эксплуатационные затраты на несколько порядков меньше. Ведь топливо не нужно… На основе таких двигателей, можно делать и энергоблоки на электростанциях, не требующие никакого топлива. Электродвигатель вращает генератор без торможения ротора, поэтому его мощность небольшая. А генератор отдает энергию в обычную сеть. Выгодно делать такие энергоблоки вместо трансформаторов на подстанциях малой и средней мощности, обслуживающих группу отдельных домов, или небольшое предприятие. Возможны и индивидуальные блоки такого типа, для отдельных коттеджей. Но в данном случае, выгоднее использовать генераторы без подвижных частей, как более долговечные и бесшумные. Так как, используются в основном хорошо отработанные технологии и недорогие материалы для изготовления двигателей, то затраты на новую энергетику небольшие, а выгода огромная.

В течении 25-30 лет, можно значительно сократить использование органического топлива, закрыть вредные производства, отказаться от строительства новых электростанций, сократить в несколько раз автомобильный парк, за счет расширения электромобилей, а также изменить структуру всей промышленности, в сторону экологически чистых, наукоемких производств. Добыча полезных ископаемых тоже претерпит значительное изменение. Трудно даже представить себе последствия данной энергетики для человечества. Это и развитие сельского хозяйства, освоение Арктики и Антарктики, подводного мира, космоса… Прорыв в медицине(искусственное сердце с питанием от подобного генератора вместо аккумуляторов, как сейчас)… Перспективы даже невозможно себе представить, настолько они многогранны. Сейчас много разговоров и рекламы о двигателях и генераторах ПЕРЕНДЕВ, ЛЮТЕК, СТЕОН и мн. других. Предлагаемые двигатели и генераторы, проще по конструкции, дешевле, технология почти не отличается от используемой в промышленности. Материалы самые обычные. Стоимость таких двигателей и генераторов ожидается на уровне известных коллекторных и вентильных двигателей равной мощности. Удельная мощность также, примерно соответствует вентильным двигателям.

Выгоды вложения средств в данные проекты очевидны. Предлагаемые двигатели и генераторы, можно изготовить за очень короткий срок – от одного до трех месяцев. Вложения средств небольшое – не более 10 – 30 тысяч долларов за работающий прототип. В самом худшем случае, подобный двигатель или генератор позволит вырабатывать в два раза больше энергии, чем потребляет сам. В лучшем – выигрыш составит до 10 раз. Стоимость промышленного производства данных конструкций, не превысит 100 – 200 долларов за установленный киловатт мощности.

Удельная мощность двигателей (мощность на единицу веса, или объема) будет равна или больше, чем у аналогичного по параметрам промышленного двигателя. По генератору пока ничего определенного сказать невозможно. Эксперименты пока не дают ответа на этот вопрос. Принимая во внимание конструктивные особенности генераторов, можно предположить, что их удельная мощность будет в два – три раза меньше, чем у ныне использующихся промышленных. Но их преимущество в том, что они будут вырабатывать электроэнергию, почти не потребляя механическую, и следовательно не расходуя топливо. Поэтому производимая ими электроэнергия будет почти даровая (расходы только на обслуживание и ремонт, как и любого генератора).

Читайте также:  Генератор герба для вымышленной страны

Источник

Генератор без торможения ротора под нагрузкой

Мотор-генератор своими руками (опыты, видео, принцип работы)

Изобретение относится к области электротехники и электроэнергетики, в частности к способам и оборудованию для генерирования электрической энергии, и может быть использовано в автономных системах электроснабжения, в автоматике и бытовой технике, на авиационном, морском и автомобильном транспорте.

За счет нестандартного способа генерации, и оригинальной конструкции мотора-генератора, режимы генератора и электромотора, объединены в одном процессе, и неразрывно связаны. В результате чего, при подключении нагрузки, взаимодействие магнитных полей статора и ротора образует вращающий момент, который по направлению совпадает с моментом, создаваемым внешним приводом.

Другими словами, при увеличении мощности потребляемой нагрузкой генератора, ротор мотора-генератора начинает ускоряться, и соответственно понижается мощность, потребляемая внешним приводом.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента.

Результаты экспериментов, которые привели к изобретению мотора-генератора.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше, чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента. Эта информация подтолкнула нас на проведение ряда экспериментов с кольцевой обмоткой, результаты которых мы покажем на этой странице. Для экспериментов, на тороидальный сердечник, были намотаны 24шт., не зависимые обмотки, с одинаковым количеством витков.

1) Вначале вес обмотки были включены последовательно, выводы на нагрузку расположены диаметрально. В центре обмотки был расположен постоянный магнит с возможностью вращения.

После того как магнит с помощью привода приводился в движение, подключалась нагрузка и лазерным тахометром измерялись обороты привода. Как и следовало ожидать, обороты приводного двигателя начинали падать. Чем большую мощность потребляла нагрузка, тем сильнее падали обороты.

2) Для лучшего понимания процессов происходящих в обмотке, вместо нагрузки был подключен миллиамперметр постоянного тока.
При медленном вращении магнита, можно наблюдать, какая полярность и величина выходного сигнала, в данном положении магнита.

Из рисунков видно, когда полюсы магнита, находятся напротив выводов обмотки (рис. 4;8), ток в обмотке равен 0. При положении магнита, когда полюсы находятся в центре обмотки, мы имеем максимальное значение тока (рис. 2;6).

3) Нa следующем этапе экспериментов, использовалась только одна половина обмотки. Магнит также медленно вращался, и фиксировались показания прибора.

Показания прибора полностью совпадали с предыдущим экспериментом (рис 1-8).

4) После этого к магниту подключили внешний привод и начали его вращать на максимальных оборотах.

При подключении нагрузки, привод начал набирать обороты!

Другими словами, при взаимодействии полюсов магнита, и полюсов образующихся в обмотке с магнитопроводом, при прохождении через обмотку тока, появился вращающий момент, направленный по ходу вращающего момента созданного приводным двигателем.

Рисунок 1, идет сильное торможение привода при подключении нагрузки. Рисунок 2, при подключении нагрузки привод начинает ускоряться.

5) Что бы понять что происходит, мы решили создать карту магнитных полюсов, которые появляются в обмотках при прохождении через них тока. Для этого была проведена серия экспериментов. Обмотки подключались в разных вариантах, а на концы обмоток подавались импульсы постоянного тока. При этом на пружине был закреплен постоянный магнит, и по очереди располагался рядом с каждой из 24 обмоток.

По реакции магнита (отталкивался он или притягивался) была составлена карта проявляющихся полюсов.

Из рисунков видно, как проявлялись магнитные полюсы в обмотках, при различном включении (желтые прямоугольники на рисунках, это нейтральная зона магнитного поля).

При смене полярности импульса, полюсы как и положено менялись на противоположные, по этому разные варианты включения обмоток, нарисованы при одной полярности питания.

6) Па первый взгляд, результаты на рисунках 1 и 5 идентичны.

При более подробном анализе, стало ясно, что распределение полюсов по окружности и «размер» нейтральной зоны довольно сильно отличаются. Сила с которой магнит притягивался или отталкивался от обмоток и магнитопровода показана градиентной заливкой полюсов.

7) При сопоставлении данных экспериментов описанных в пунктах 1 и 4, кроме кардинальной разницы в реакции привода на подключение нагрузки, и существенной разницы в «параметрах» магнитных полюсов, были выявлены и другие отличия. При проведении обоих экспериментов, параллельно нагрузке был включен вольтметр, а последовательно с нагрузкой включался амперметр. Если показания приборов из первого эксперимента (пункт 1), взять за 1, то во втором эксперименте (пункт 4), показание вольтметра так же было равно 1. По показания амперметра составляло 0,005 от результатов первого эксперимента.

Читайте также:  Замена ремня генератора бмв е38 м62

8) Исходя из изложенного в предыдущем пункте, логично предположить, если в незадействованной части магнитопровода, сделать немагнитный (воздушный) зазор, то сила тока в обмотке должна увеличиться.

После того как был сделан воздушный зазор, магнит снова подключили к приводному двигателю, и раскрутили на максимальные обороты. Сила тока действительно возросла в несколько раз, и стала составлять примерно 0,5 от результатов эксперимента по пункту 1,
но при этом появился тормозной момент на привод.

9) Способом, который описан в пункте 5, была составлена карта полюсов данной конструкции.

10) Сопоставим два варианта

Не трудно предположить, если увеличить воздушный зазор в магнитопроводе, геометрическое расположение магнитных полюсов по рисунку 2, должно приблизиться к такому расположению как в рисунке 1. А это в свою очередь, должно привести к эффекту ускорения привода, который описан в пункте 4 (при подключении нагрузки, вместо торможения, создается добавочный момент к вращающему моменту привода).

11) После того как зазор в магнитопроводс был увеличен до максимума (до краев обмотки), при подключении нагрузки вместо торможения, привод снова начал набирать обороты.

При этом карта полюсов обмотки с магнитопроводом выглядит так:

На основе предложенного принципа генерации электроэнергии, можно конструировать генераторы переменного тока, которые при повышении электрической мощности в нагрузке, не требуют повышения механической мощности привода.

Принцип работы Мотора Генератора.

Согласно явлению электромагнитной индукции при изменении магнитного потока проходящего через замкнутый контур, в контуре возникает ЭДС.

Согласно правилу Ленца: Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. При этом не имеет значения, как именно магнитный поток, движется по отношению к контуру (Рис. 1-3).

Способ возбуждения ЭДС в нашем моторе-генераторе аналогичен рисунку 3. Он позволяет использовать правило Ленца для увеличения вращающего момента на роторе (индукторе).

1) Обмотка статора
2) Магнитопровод статора
3) Индуктор (ротор)
4) Нагрузка
5) Направление вращения ротора
6) Центральная линия магнитного поля полюсов индуктора

При включении внешнего привода, ротор (индуктор) начинает вращаться. При пересечении начала обмотки магнитным потоком одного из полюсов индуктора в обмотке индуцируется ЭДС.

При подключении нагрузки, в обмотке начинает течь ток и полюса возникшего в обмотках магнитного поля согласно правилу Э. X. Ленца направлены на встречу возбудившего их магнитного потока.
Так как обмотка с сердечником расположена по дуге окружности, то магнитное поле ротора, движется вдоль витков (дуги окружности) обмотки.

При этом в начале обмотки согласно правилу Ленца, возникает полюс одинаковый с полюсом индуктора, а на другом конце ротивоположный. Так как одноименные полюса отталкиваются, а противоположные притягиваются, индуктор стремится принять положение, которое соответствует действию этих сил, что и создает добавочный момент, направленный по ходу вращения ротора. Максимальная магнитная индукция в обмотке достигается в момент, когда центральная линия полюса индуктора находится напротив середины обмотки. При дальнейшем движении индуктора, магнитная индукция обмотки уменьшается, и в момент выхода центральной линии полюса индуктора за пределы обмотки, равна нулю. В этот же момент, начало обмотки начинает пересекать магнитное поле второго полюса индуктора, и согласно правилам, описанным выше, край обмотки от которого начинает отдаляться первый полюс начинает его отталкивать с нарастающей силой.

Рисунки:
1) Нулевая точка, полюсы индуктора (ротора) симметрично направлены на разные края обмотки в обмотке ЭДС=0.
2) Центральная линия северного полюса магнита (ротора) пересекла начало обмотки, в обмотке появилась ЭДС, и соответственно проявился магнитный полюс одинаковый с полюсом возбудителя (ротора).
3) Полюс ротора находится в центре обмотки, и в обмотке максимальное значение ЭДС.
4) Полюс приближается к концу обмотки и ЭДС снижается до минимума.
5) Следующая нулевая точка.
6) Центральная линия южного полюса входит в обмотку и цикл повторяется (7;8;1).

Видео-ролик первого эксперимента:

Видео-ролик второго эксперимента:

Источник

Adblock
detector